Loading...
机构名称:
¥ 3.0

为什么要将量子力学与计算和信息理论结合起来?首先,什么是信息,什么是计算?在经典语境中,信息以布尔变量字符串(“位”)的形式存在,计算是通过规定的步骤序列(“程序”)更新字符串的过程,它通过基本布尔运算(“门”)来实现,如 AND、OR、NOT、SWAP 等,其特性是每一步都需要固定的努力来执行,与字符串的长度无关。但位究竟是什么?除了作为布尔变量的存储单位外,它还具有我们可以通过区分物理状态(电子电荷等)来识别其所代表的变量的特性。正如 R. Landauer 所说,“没有表示就没有信息”。因此,我们得出了一个令人震惊的结论,即计算(和信息处理)必须对应于表示信息的系统的物理演化。因此,信息存储、通信和处理的所有可能性和局限性都必须以物理定律为基础——由于许多原因,这种观点并不十分流行,但有一定依据。但当然,量子物理学与经典物理学截然不同。原则上,量子计算机确实无法计算经典计算机上无法计算的任何东西。原因很简单:我们可以用经典计算机模拟薛定谔方程,因此可以模拟任何量子系统——无论需要多长时间。尽管如此,当我们将量子思想引入计算的“物理系统演化”时,我们仍然可以实现比经典计算更多的目标。首先,量子计算机提供了更强大的计算能力,无论是在计算某些对象所需的空间还是时间上。例如,考虑以下任务:给定一个整数 N(n = O(log N)位),我们希望快速找到它的一个因子,即算法在多项式时间内运行,即计算它所需的时间受“输入大小”n 的多项式的限制。可以使用明显的试除法算法,直到√

量子信息与计算

量子信息与计算PDF文件第1页

量子信息与计算PDF文件第2页

量子信息与计算PDF文件第3页

量子信息与计算PDF文件第4页

量子信息与计算PDF文件第5页

相关文件推荐

2023 年
¥1.0
2021 年
¥2.0
2023 年
¥1.0
2020 年
¥3.0
2023 年
¥1.0
2024 年
¥4.0
2020 年
¥2.0
2020 年
¥5.0
2021 年
¥2.0
2022 年
¥1.0
2024 年
¥1.0
2023 年
¥1.0
2024 年
¥5.0
2023 年
¥1.0
2021 年
¥1.0
2020 年
¥3.0
2022 年
¥2.0
2022 年
¥3.0
2021 年
¥9.0
2023 年
¥1.0
2022 年
¥8.0
2023 年
¥3.0
2023 年
¥1.0