对于软件来说,情况类似,但是可能出现的故障类别要多得多。由于实现与其规范之间的差异是人为错误的结果,因此某些类型的故障几乎无法提前预测。尽管如此,还是可以假设某些故障类别,并构建测试集来检测它们。Weyuker 等人 [1994] 和 Richardson 和 Thompson [1988; 1993] 定义的故障类别如下:变量引用故障——布尔变量 x 被另一个变量 y 替换,x → y;变量否定故障——布尔变量 x 被 x → 替换;表达式否定故障——布尔表达式 p 被 p → 替换;关联移位错误——一个布尔表达式被一个变量之间关联的表达式所替换,例如,将 x ∧ � y ∨ z � 替换为 x ∧ y ∨ z ;运算符引用错误——一个布尔运算符被另一个运算符替换,例如,将 x ∧ y 替换为 x ∨ y 。Vouk et al. [1994] 定义了其他类型的错误:不正确的关系运算符、不正确的括号、不正确的算术表达式、多余的二元运算符、缺少二元运算符。实验结果已用于评估各种测试生成方法的有效性[Ammann et al. 1998; Foster 1984; Offutt and Liu 1997; Vouk et al.1994; Weyuker et al. 1994],尽管考虑的故障类别都是从规范中得出的,并且一些实现故障可能并不完全适合
为什么要将量子力学与计算和信息理论结合起来?首先,什么是信息,什么是计算?在经典语境中,信息以布尔变量字符串(“位”)的形式存在,计算是通过规定的步骤序列(“程序”)更新字符串的过程,它通过基本布尔运算(“门”)来实现,如 AND、OR、NOT、SWAP 等,其特性是每一步都需要固定的努力来执行,与字符串的长度无关。但位究竟是什么?除了作为布尔变量的存储单位外,它还具有我们可以通过区分物理状态(电子电荷等)来识别其所代表的变量的特性。正如 R. Landauer 所说,“没有表示就没有信息”。因此,我们得出了一个令人震惊的结论,即计算(和信息处理)必须对应于表示信息的系统的物理演化。因此,信息存储、通信和处理的所有可能性和局限性都必须以物理定律为基础——由于许多原因,这种观点并不十分流行,但有一定依据。但当然,量子物理学与经典物理学截然不同。原则上,量子计算机确实无法计算经典计算机上无法计算的任何东西。原因很简单:我们可以用经典计算机模拟薛定谔方程,因此可以模拟任何量子系统——无论需要多长时间。尽管如此,当我们将量子思想引入计算的“物理系统演化”时,我们仍然可以实现比经典计算更多的目标。首先,量子计算机提供了更强大的计算能力,无论是在计算某些对象所需的空间还是时间上。例如,考虑以下任务:给定一个整数 N(n = O(log N)位),我们希望快速找到它的一个因子,即算法在多项式时间内运行,即计算它所需的时间受“输入大小”n 的多项式的限制。可以使用明显的试除法算法,直到√
o上述问题的贝叶斯网络如下。网络结构表明,盗窃和地震是警报的母节,直接影响警报熄灭的可能性,但David和Sophia的调用取决于警报概率。o网络代表我们的假设没有直接感知入室盗窃,也不注意到次要地震,并且在呼叫之前也不会授予。o theconditionAldistributionsForeachNodeAdeAdeAsconditionalProbabilitableOrcpt。o CPT中的每一行必须汇总至1,因为表中的所有条目都代表了该变量的详尽集库。o在CPT中,带有K布尔父母的布尔变量包含2 K概率。因此,如果有两个父母,则CPT将包含4个概率值
语境性和非局域性是量子统计所表现出的非经典性质,其含义深刻影响着量子理论的基础和应用。在本文中,我们对逻辑语境性和不等式证明提供了一些见解。前者可以理解为语境性的可能性版本,而后者是指不基于某些非语境性(或贝尔)不等式违反的量子语境性和非局域性的证明。我们所说的“可能性”是指结果的可能性描述,这些结果为布尔变量,当相应概率严格大于零时,其值为 1,否则为 0。本研究旨在从我们所谓的可能性悖论中建立这两个概念之间的桥梁,可能性悖论是一组可能性条件,其发生意味着语境性和非局域性。作为主要结果,我们证明了可能性悖论的存在,其发生是一类非常重要的场景中逻辑语境性的必要和充分条件。最后,我们讨论了这些可能性悖论的完整性所带来的一些有趣的后果。
以上内容可能对许多读者来说并不奇怪,但我们可以更进一步——如果信息用比特来表示,那么“什么是比特?” 上面我们将其与布尔变量联系起来,这是一个抽象的数学概念。但这不能是我们的答案,因为当我们获取信息时,我们需要真正接收“一些真实的东西”,而不仅仅是接受一个抽象的数学概念。这里的关键点很好地表达在以下引言中(R. Landauer 1996)“信息不是一个无形的抽象实体;它总是与物理表示相关”。事实上,布尔值 0 和 1 仅用于提供两个可识别的不同标签。所以我们对“什么是比特?”的回答是:比特由任何两个不同的物理状态(某个物理系统的)给出,这两者可以通过物理测量可靠地区分。布尔值 0 和 1 只是页面上两种可区分的物理墨水模式;当我们提出问题并听到“是”或“否”时,我们只是将耳朵用作物理设备来区分空气中两种不同的声波形式;在计算机内存中,比特可以用材料中的两种不同电压电平来表示。这里的关键信息是:“没有表示就没有信息!”
1. 逻辑推理。我们区分了两种逻辑推理方法:基于模型的和基于证明的。根据基于模型的观点,逻辑规则被解释为对布尔变量的一组约束。这种观点产生了 NeSy 方法,其中逻辑转化为神经网络的正则化损失。从证明论的角度来看,逻辑规则被视为推理规则,人们执行一系列推理步骤来获得查询的证明。这种观点导致了 NeSy 方法的产生,其中逻辑是神经网络架构的模板。2. 逻辑语法,我们根据命题、关系或一阶逻辑对系统进行分类。关系和一阶 NeSy 系统在其逻辑语句中引入逻辑变量,从而允许对其学习模块进行结构化(即模板化)定义。 3. 逻辑语义 ,为了实现基于梯度的学习,大多数 NeSy 系统引入了离散布尔逻辑语义的放宽。最常见的选择是模糊逻辑和概率逻辑。 4. 学习。NeSy 系统通常关注学习加权逻辑理论或神经网络权重的参数。一些系统还学习模型的结构,即逻辑规则的形状或神经模块的架构。 5. 符号与子符号。我们可以对比逻辑理论元素的两大类表示
我们研究了由奖励机器编码的任务的加强学习问题。在环境中的一组属性(称为原子命题)中定义任务,并由布尔变量代表。文献中常用的一个不切实际的假设是,这些命题的真实价值是准确的。在实际情况下,这些真实价值观尚不确定,因为它们来自不完美的传感器。同时,奖励机可以很难明确地建模,尤其是当它们编码复杂的任务时。我们开发了一种增强学习算法,该算法会渗透到奖励机器,该奖励机器在学习如何执行它的同时编码了基本任务,尽管命题的真实价值是不确定的。为了解决此类不确定性,该算法对原子命题的真实价值保持了概率估计;它根据环境探索到达的新感官测量结果来更新此估算。另外,该算法维护了一个假设奖励机,该奖励机是对编码要学习的任务的奖励机器的估计。在代理商探索环境时,该算法根据获得的奖励和原子命题的真实价值的奖励和提议来更新假设奖励机。最后,该算法对假设奖励机的状态使用Q学习过程来确定完成任务的最佳策略。我们证明,该算法成功地侵入了奖励机,并渐近地学习完成各自任务的政策。
1。引入统计力学思想和工具在八十年代中期发起的随机优化问题[1]的应用,这是由于发现在约束满意度问题(CSP)的第五年前的相变的重新兴趣所带来的。brie ploge,一个人想决定是否在一组变量(至少)解决一个解决方案上是否会随机绘制的一组约束。当变量的数量在每个变量的约束时以固定比率α的固定比率α,答案突然从(几乎可以肯定的是)是的,是否,当比率越过一些临界值αs时。统计物理研究指出,在YES区域中存在另一种相变[2,3]。一组解决方案从以某种比例αd <αs的比例连接到断开的簇的集合,这是一种在均值式旋转玻璃理论中识别的副本对称性破坏过渡的优化术语的翻译。预计这种聚类过渡可能会产生动态后果。作为副本对称性打破信号的遗传性丧失,采样算法(例如蒙特卡洛程序)在该过渡时遇到问题。在[4]中,对于k -xorsat模型的情况,对MC方案的放缓进行了定量研究,其中约束仅是k布尔变量的线性方程(Modulo 2)(有关简介,请参见[5]和其中的参考文献)。目前的论文是谦虚的然而,发现解决方案原则上应该比抽样容易,并且分辨率算法的性能与表征解决方案空间的静态相变的性质的确切性质远非显而易见[6]。