Loading...
机构名称:
¥ 1.0

量子技术可以突破传统信息技术的瓶颈,保障信息安全,加快计算速度,提高测量精度,为经济社会发展中的一些问题提供革命性的解决方案。量子信息与计算理论为量子技术的发展提供了保障。本期特刊旨在研究量子信息的一些基本特性和应用,包括但不限于互补性、量子算法、量子相干性、量子关联、量子测量、量子计量、量子不确定性和量子信息处理。本期特刊中的工作可分为两类:量子信息基础理论和量子信息处理与算法设计。我们从前者开始。量子信道通常会改变系统的量子特性,比如引起量子态的退相干、破坏量子关联。从信息的角度表征量子信道已经取得了丰硕的成果。在 [1] 中,Song 和 Li 提出了一个框架,从量子信道可以诱导的集合中量子性的数量的角度定性和定​​量地表征量子信道。他们研究了集合中的量子性动态,并提出了量子性功率和去量子性功率来表征量子通道。如果一个通道始终降低所有集合的量子性,那么它就是一个完全去量子性通道。还通过几个例子研究了与马尔可夫通道的关系。这项工作从系统与环境相互作用带来的量子性信息流的角度说明了量子通道的新性质。结果可以直接推广到任意维度和其他量子性测度。量子验证已被视为可扩展技术道路上的一项重大挑战。除了对量子态进行断层扫描之外,自测试是一种独立于设备的方法,用于验证先前未知的量子系统状态和未表征的测量算子在某种程度上是否接近目标状态和测量(直到局部等距),仅基于观察到的统计数据,而不假设量子系统的维度。先前的研究主要集中于二分态和一些多分态,包括所有对称状态,但仅限于三量子比特的情况。Bao 等人 [ 2 ] 给出了具有特殊结构的四量子比特对称状态的自测试标准,并基于向量范数不等式提供了鲁棒性分析。Bao 等人还通过投影到两个子系统,将这一想法推广到参数化的四量子比特对称状态系列。Belavkin–Staszewski (BS) 相对熵是处理量子信息任务时一种非常有吸引力的关键熵,可以用来描述量子态可能的非交换性的影响(量子相对熵在这种情况下不太适用)。Katariya 和 Wilde 使用 BS 相对熵来研究量子信道估计和鉴别。Bluhm 和 Capel 贡献了加强版

量子信息与计算

量子信息与计算PDF文件第1页

量子信息与计算PDF文件第2页

量子信息与计算PDF文件第3页

量子信息与计算PDF文件第4页

相关文件推荐

2023 年
¥1.0
2021 年
¥3.0
2021 年
¥2.0
2020 年
¥3.0
2023 年
¥1.0
2024 年
¥4.0
2020 年
¥2.0
2020 年
¥5.0
2021 年
¥2.0
2022 年
¥1.0
2024 年
¥1.0
2023 年
¥1.0
2024 年
¥5.0
2023 年
¥1.0
2021 年
¥1.0
2020 年
¥3.0
2022 年
¥2.0
2022 年
¥3.0
2021 年
¥9.0
2023 年
¥1.0
2022 年
¥8.0
2023 年
¥3.0
2023 年
¥1.0