摘要 过去几年,重力梯度仪仪器技术取得了重大进展,人们对此的兴趣空前高涨,各种应用的新部署方案也层出不穷。重力梯度测量现在通常被视为资源勘探活动的可行组成部分,并被用于全球信息收集。自 19 世纪 90 年代扭力天平发明以来,人们已经认识到重力梯度信息很有价值,但获取起来却困难且耗时。本文将总结梯度传感器开发的进展,并将介绍已成功部署的部署方案和梯度仪系统。最后,我们将简要介绍与改进重力梯度仪操作能力相关的最重大挑战,包括仪器和系统固有噪声、车辆动态噪声、地形噪声、地质噪声和其他噪声源。
摘要 过去几年,重力梯度仪仪器技术取得了重大进展,引起了空前的兴趣,各种应用也出现了新的部署方案。重力梯度测量现在通常被视为资源勘探活动的可行组成部分,并被部署用于全球信息收集。自 19 世纪 90 年代扭力天平问世以来,人们已经认识到重力梯度信息很有价值,但获取起来却很困难且耗时。本文将总结梯度传感器开发的进展,还将介绍已成功部署的部署方案和梯度仪系统。最后,我们将简要介绍与改进重力梯度仪操作能力相关的最重大挑战,包括仪器和系统固有噪声、车辆动态噪声、地形噪声、地质噪声和其他噪声源。
本文介绍了一种阻力机动装置 (DMD),它可以在许多任务中取代此类系统。DMD 由四根以飞镖配置展开的可伸缩带弹簧臂组成,可以主动调节主卫星的阻力面积以进行轨道机动和任务后处置,同时利用空气动力和重力梯度扭矩提供被动三轴姿态稳定性。集成在 DMD 中的磁力矩器可抑制姿态振荡,并有助于确保卫星以正确的面天底指向稳定。本研究概述了 DMD 设计,并详细介绍了用于表征 DMD 性能和设计控制和操作方法的姿态和轨道模拟结果。本文重点介绍了 DMD 的姿态稳定性特性。
抽象原子干涉仪在过去的三十年中已经开发为研究重力的新功能工具。它们用于测量重力加速度,重力梯度和重力曲率曲率,以确定在显微镜距离处的重力研究,以测试重力在显微镜距离处的重力原理,以测试重力原理,以探测一般性和量化性的量化量和量化性的量化性,以探测量化的量化和量化性的量化性,以探测量化性的量化和量化性的量化性,以量化量化和量化性的量化性,以量化量化性,以量化量化性,以量化量化性和量化性。暗能量,并被提出为观察引力波的新探测器。在这里,我描述了过去和正在进行的实验,对我认为这是该领域的主要前景以及寻找新物理学的潜力。
第二,即使空间分辨率会改善,重力级仪也会从空间中看到很多,因为在水中发生了很多事情,例如,考虑商业水下基础设施,地表船,飞机等。即使重力梯度计能够检测和区分潜艇,也需要进一步的智能来确定它看到的潜艇类型和哪种类型的潜艇。但分类很难。喜欢观鸟,人们需要很好地知道要寻找什么。SSBNS水域旁边挤满了商业,研究和常规军事潜艇。2019年,40个州的军队经营491个常规和核替补。 47该数字不包括私人或研究机构拥有的人。 因此,区分战略性核潜艇很可能只会通过连续跟踪才有意义,从而将核潜艇与已知的端口/堡垒相关。2019年,40个州的军队经营491个常规和核替补。47该数字不包括私人或研究机构拥有的人。因此,区分战略性核潜艇很可能只会通过连续跟踪才有意义,从而将核潜艇与已知的端口/堡垒相关。
长期微重力环境对人类生理学有许多有害影响。与长时间探索任务有关的此问题的最明显解决方案是纠正缺乏重力。这可以使用短臂人体离心机来完成,但似乎没有足够的有效性,也许是因为这种对策的持续时间很短和/或巨大的身体重力梯度。必须研究新的观点,例如查看(非常)长臂旋转系统是否会产生连续的1 g或部分重力场可能会解决此问题。除了有关宇航员微重力病理学的预期益处,此外,航天器本身之外,其机上(子)系统和过程可能会受益于旋转配置。在本文中,我们非常简短地解决了医疗问题,但是这项工作主要集中在工程,运营,生命支持,安全性和预算方面的优势,即首先在低地球轨道上不断旋转的航天器,然后在长期持续到火星。一个大型旋转航天器是可行的,并且可以负担得起,并且可以负担得起。它具有政府和商业用途的优势,但也鉴于太空旅游业的预期增加。它还将节省机组的时间和数十亿美元,以抵消微重力的影响。
太空生命科学实验的重要目的之一就是研究重力对生命的影响,因为生命始终受到地球引力的影响。在轨道运行的人造卫星和航天飞机上都进行过这样的实验。为了确定重力本身对轨道的影响,重要的是创造稳定的控制实验环境,其中其他参数(例如宇宙射线和电磁波)尽可能相同,并且只指定重力的影响。在地面实验中很难创造在轨实验条件,但在轨道实验室中创造重力更容易,可以确保更好的对比实验。为了在轨道实验室中创造重力环境,可以通过旋转部件产生离心力来创造重力。旋转直径越大越好,以减少科里奥利力和重力梯度的影响,但航天器可用空间有限。在国际空间站(ISS)的日本实验舱“希望号”中,有一个用于离心生命科学实验的轨道实验设施。该设施通过优化可用的实验室空间,拥有国际空间站中最大的旋转直径之一。该设施可以通过离心力产生小于 1G 的重力,这在地面设施中很难产生,并能长时间保持稳定。该设施还可以模拟相当于月球表面和火星的重力。三菱重工有限公司 (MHI) 开发了带有大型离心机(旋转半径:38 厘米)的实验设施,该设施自 2020 年以来一直在运行。本报告概述了该设施的开发和首次任务。| 1. 简介
摘要。作为基本海洋空间地理信息,海藻地形在海洋观察和科学研究中起着至关重要的作用。随着对高精度测深模型的需求不断增长,多层感知器(MLP)神经网络用于在此pa-per中整合多源海洋测量数据。全球海洋的一种新的测深模型,跨越180°E – 180°W和80°S – 80°N,称为山东科学技术大学2023年海洋测量图(SDUST2023BCO),已构建,网格大小为1'×1'。使用的多源海洋测量数据包括山东科学技术大学发布的重力异常数据,垂直重力梯度以及Scripps海洋学研究所(SIO)发布的垂直偏转数据,以及由中心国家D'Etudes eTudes Spatiales(cesne)发布的均值dy-namic Topograth数据。首先,从多源海洋大地测量数据中组织了输入和输出数据以训练MLP模型。第二,在相关点处的输入数据被馈入MLP模型以获得预测测深。最后,已经为全球海洋区域构建了一个分辨率为1'×1'的高精度测深模型。通过与船舶寄生的单光束测深数据和GEBCO_2023和TOPO_25.1模型进行比较,评估了SDUST2023BCO模型的有效性和可靠性。结果表明SDUST2023BCO模型是准确且可靠的,有效地捕获和反映了全球海洋测深信息。SDUST2023BCO型号可在https://doi.org/10.5281/Zenodo.13341896(Zhou等,2024)获得。
本文介绍了三体旋转系统的研究和设计,该系统将用作研究不同重力变量(包括模拟月球和火星重力条件)下系统功能和人体生理学的前兆/试验台。试验台将是收集人造重力对航天器系统和人体生理学影响数据的必要步骤,有助于优化月球和火星表面栖息地以及人造重力航天器的设计方案。这将是低地球轨道可变重力研究平台开发的第一阶段,用于长期研究可变重力梯度和旋转引起的重力模拟的影响。确保宇航员在长期火星任务期间的安全以及他们返回后的恢复是任务成功的关键要求。因此,在执行任务之前必须充分了解部分重力对生理和心理能力的长期影响,并且需要一个研究平台来研究部分重力对人类和技术系统的影响。在低地球轨道 (LEO) 绕地球运行的可变重力研究平台可以解决这一知识空白。低地球轨道是此类设施的理想地点,因为低地球轨道距离地球表面很近,而且可以利用那里现有的基础设施和商业活动。此类平台的开发需要分阶段进行。本文介绍了第一阶段。它是研究平台的试验台,由两艘定制的龙飞船组成,龙飞船停靠在中央枢纽,然后停靠在国际空间站的 Zvezda 舱。该提案旨在利用现成的元素来降低开发成本和时间,使我们能够使用当今的技术在“明天”进行测试。为了执行操作,试验台将脱离对接,撤退到国际空间站后方 2000 米处,并通过启动增强推进器开始旋转。然后,载人龙飞船将系绳到所需的旋转半径以开始测试操作。完成后,试验台将停止旋转,收回系绳并重新对接国际空间站。该序列将根据需要重复。本文还介绍了测试平台的测试目标、优势、劣势、机遇和威胁的分析、测试平台组成部分的设计开发和选择标准、操作概念和与测试平台相关的可能风险及其各自的缓解措施。
本论文的目的是评估在之前的论文和科学文章中研究的柔性航天器模型与在 MSC Adams 软件中实施的相同航天器之间的比较,旨在验证该模型。借助这一创新工具,可以评估用户可能希望获得的几个功能,进行非线性多体分析,从而提供更真实的数据集。法国航天局 (CNES) 的 Picard 卫星被用作航天器的主体,其动力学用刚体的欧拉方程表示。太阳能电池板和反作用轮的配置在位置和尺寸方面相对于 Picard 进行了修改,以便在 MSC Adams 中建造航天器时具有优势并拥有更通用的卫星类型。特别是,考虑了四个对称的太阳能电池板和位于航天器质心的三个反作用轮系统。这项工作最重要的方面是卫星的柔性部分,由四个太阳能电池板表示。使用 MSC Patran/MSC Nastran 进行有限元法 (FEM) 分析,以获得模型所需的自然模式和频率,并评估刚性和柔性部分之间的耦合矩阵。论文的第二部分是关于在 MSC Adams View 中实现航天器设计以及通过 MSC Adams 和 MATLAB/Simulink 环境进行的模拟阶段。在机动过程中,为姿态控制实施了一个简单的比例-微分 (PD) 控制器,目的是实现所需的欧拉角,旨在模拟指向特定目标的新指向方向的命令。对这两个模型进行了比较,以便更好地了解太阳能电池板柔性的影响以及 MSC Adams 中更复杂的分析与通过数学模型线性化、更近似的分析之间的可能差异。还评估了三块太阳能电池板发生故障时的姿态控制。 PD 控制器确保在操纵过程中具有良好的性能和稳定的响应,尽管系统受到外部(仅考虑重力梯度)和内部(太阳能电池板的振动)干扰。不过,如果太阳能电池板发生故障,这种基本控制器仍会出现一些问题。