摘要。作为基本海洋空间地理信息,海藻地形在海洋观察和科学研究中起着至关重要的作用。随着对高精度测深模型的需求不断增长,多层感知器(MLP)神经网络用于在此pa-per中整合多源海洋测量数据。全球海洋的一种新的测深模型,跨越180°E – 180°W和80°S – 80°N,称为山东科学技术大学2023年海洋测量图(SDUST2023BCO),已构建,网格大小为1'×1'。使用的多源海洋测量数据包括山东科学技术大学发布的重力异常数据,垂直重力梯度以及Scripps海洋学研究所(SIO)发布的垂直偏转数据,以及由中心国家D'Etudes eTudes Spatiales(cesne)发布的均值dy-namic Topograth数据。首先,从多源海洋大地测量数据中组织了输入和输出数据以训练MLP模型。第二,在相关点处的输入数据被馈入MLP模型以获得预测测深。最后,已经为全球海洋区域构建了一个分辨率为1'×1'的高精度测深模型。通过与船舶寄生的单光束测深数据和GEBCO_2023和TOPO_25.1模型进行比较,评估了SDUST2023BCO模型的有效性和可靠性。结果表明SDUST2023BCO模型是准确且可靠的,有效地捕获和反映了全球海洋测深信息。SDUST2023BCO型号可在https://doi.org/10.5281/Zenodo.13341896(Zhou等,2024)获得。
主要关键词