无论您从事的教育程度如何,这篇文章都是试图说服您试图抓住或检测GAI是徒劳的。不仅如此,检测工具和其他窃的调查器可能是不道德的,对GAI使用的惩罚性方法将增加教育工作者的工作量。今年,我在澳大利亚州和各州的许多不同学校工作。我已经提出了很多有关GAI和评估的问题,因此我将以FAQ介绍这篇文章。如果在文章结尾处,您仍然认为检测是一个可行的选择,我鼓励您通过左侧的“联系表”按钮与您取得联系。
JEL classification: D84, E24, E31, E32, J11 Key words: Phillips curve, unemployment, inflation, natural rate of unemployment, expectations _________________ Crump: Federal Reserve Bank of New York (email: richard.crump@ny.frb.org).Eusepi,午:德克萨斯大学奥斯汀分校(电子邮件:stefano.eusepi@austin.utexas.edu,aysegul.sahin@austin.utexas.edu)。 Giannoni:Barclays(电子邮件:mpgiannoni@gmail.com)。 马克·吉安诺尼(Marc Giannoni)在达拉斯联邦储备银行的雇员时为本文做出了贡献。 本文最初是在2021年1月3日关于“衡量失业差距”的ASSA会议上发表的。作者感谢Emmanuel Saez和Pascal Michaillat组织了会议,Regis Barnichon进行了讨论。 他们还要感谢他们的编辑里卡多·里斯(Ricardo Reis),匿名裁判,他们的讨论者乔迪·加里(JordiGalí)和乔纳森·哈泽尔(Jonathan Hazell)以及2022年JME-SNB-SCG会议的参与者。 此外,他们感谢爱德华·尼尔森(Edward Nelson)对历史通货膨胀动态解释的有益评论。 Jin Yan,Charles Smith和Ignacio Lopez Gaffney提供了出色的研究帮助。Eusepi,午:德克萨斯大学奥斯汀分校(电子邮件:stefano.eusepi@austin.utexas.edu,aysegul.sahin@austin.utexas.edu)。Giannoni:Barclays(电子邮件:mpgiannoni@gmail.com)。 马克·吉安诺尼(Marc Giannoni)在达拉斯联邦储备银行的雇员时为本文做出了贡献。 本文最初是在2021年1月3日关于“衡量失业差距”的ASSA会议上发表的。作者感谢Emmanuel Saez和Pascal Michaillat组织了会议,Regis Barnichon进行了讨论。 他们还要感谢他们的编辑里卡多·里斯(Ricardo Reis),匿名裁判,他们的讨论者乔迪·加里(JordiGalí)和乔纳森·哈泽尔(Jonathan Hazell)以及2022年JME-SNB-SCG会议的参与者。 此外,他们感谢爱德华·尼尔森(Edward Nelson)对历史通货膨胀动态解释的有益评论。 Jin Yan,Charles Smith和Ignacio Lopez Gaffney提供了出色的研究帮助。Giannoni:Barclays(电子邮件:mpgiannoni@gmail.com)。马克·吉安诺尼(Marc Giannoni)在达拉斯联邦储备银行的雇员时为本文做出了贡献。本文最初是在2021年1月3日关于“衡量失业差距”的ASSA会议上发表的。作者感谢Emmanuel Saez和Pascal Michaillat组织了会议,Regis Barnichon进行了讨论。他们还要感谢他们的编辑里卡多·里斯(Ricardo Reis),匿名裁判,他们的讨论者乔迪·加里(JordiGalí)和乔纳森·哈泽尔(Jonathan Hazell)以及2022年JME-SNB-SCG会议的参与者。此外,他们感谢爱德华·尼尔森(Edward Nelson)对历史通货膨胀动态解释的有益评论。Jin Yan,Charles Smith和Ignacio Lopez Gaffney提供了出色的研究帮助。Jin Yan,Charles Smith和Ignacio Lopez Gaffney提供了出色的研究帮助。
3使其正义过渡到低排放气候弹性的未来也是政府的优先事项。CBC指出了“将气候放在政府决策中心”的意图时,他们强调了这一点,并同意“气候变化需要政府,私营部门和社区的各个层面的决定性行动” [CBC-20-MIN-20097 Refers]。
征文:教育和教育研究中的人工智能国际研讨会 (AIEER) AIEER 2024 教育和教育研究中的人工智能国际研讨会是第 27 届欧洲人工智能会议 ECAI 2024 [https://www.ecai2024.eu/] 的一部分。本次研讨会定于 2024 年 10 月 19 日至 20 日星期六和星期日举行。 研讨会范围 本次研讨会有两个不同的重点,旨在更广泛地面向教育人工智能领域。 第 1 部分。由社会科学主导的讨论,讨论人工智能应用可能有助于解决的教育中的实际问题。这包括教育和教学人工智能的研究,也包括社会科学、经济学和人文学科,包括所有学科,如教育和教学实际行动、以教育需求为重点的劳动力市场研究、教育史和相关教育文化遗产,以及决策和行为科学观点的信息预测。一方面,我们关注人工智能、教育和社会之间的联系。这包括定量和定性研究、分析教育和劳动力市场数据的数据科学方法、推荐系统的人工智能方法以及数字化学习。另一方面,我们关注如何使用人工智能来突破该领域的界限。这包括开发新方法(包括使用人工智能的方法)、寻找和提供可访问的新数据源、丰富数据等等。在这两种情况下,不同观点之间的沟通和相互理解至关重要,这也是本次研讨会的目标之一。更广泛地说,我们感兴趣的是人工智能方法如何影响教育的所有领域以及企业和劳动力市场。这包括从小学到高等教育的所有教育部门如何受到人工智能方法的影响和对其作出反应的方法。用人工智能方法设计数字化未来为教育提出了几个问题:在最广泛的层面上,立法和规范问题;在公司层面,关于投资决策以及如何保持生产力和劳动力的问题;在个人层面,关于资格以及哪些技能需要应用和可能重新学习的问题。因此,技能和资格是教育和教育研究中人工智能的核心。第 2 部分。关于可以开发哪些人工智能应用程序(以及如何开发)来解决第 1 部分提出的问题的(计算机科学主导)讨论。使用基于人工智能的系统来支持教学或学习已经发展了 40 多年,但近年来,由于 COVID-19 大流行期间电子学习工具的使用增加以及最近生成人工智能的爆炸式增长,其增长显着增加。我们正处于这一领域发展的关键时刻,人工智能专家和教育专家必须携手合作,以在教学过程中最佳地利用这项技术。本次研讨会旨在为展示新提案和反思这一具有如此社会意义的领域的最新技术创造空间。在第一部分中,我们特别关注人工智能的技术方面,重点关注用于内容创建(生成式人工智能)、学生分析(机器学习)、学习分析或教师可解释的人工智能方法的具体技术
2024 年第二季度至第三季度 ● 在整个反馈咨询过程中对数据收集/整合点进行端到端的战略方法(包括开发和实施高效、可扩展的数据收集/整合工具 - 欣赏强制性输出模板 - 即面向公众的咨询摘要报告和反馈日志) ● 制定咨询调查(再次欣赏强制性输出模板 - 即面向公众的咨询摘要报告和反馈日志)。 ● 准备有关保险内容和更广泛的 FINZ 方法的培训平台/材料,基于第二次咨询草案的关键组件用于 SBTi 内部目的和其他用途。
摘要 人工智能 (AI) 为各个领域的研究发展开辟了新途径。人工智能技术在不同领域的广泛应用为未来创造了光明的前景。在图书馆领域,人工智能大大提高了信息资源的可用性和利用率,有助于实现图书馆的目标。为了保持相关性,图书馆员必须采用创新思维,因为人工智能现在已应用于图书馆的众多功能中,从组织书籍到促进书籍的传递。人工智能带来了新的可能性,例如整合物理和数字资源以及将视频辅助与物理材料联系起来。这篇评论文章探讨了人工智能 (AI) 在图书馆学中的整合,重点关注通过全面的文献检索发现的应用、工具和挑战。人工智能正在日益改变图书馆的运营,为编目、分类、内容发现和用户交互提供创新的解决方案。这篇评论强调了关键的人工智能驱动工具,例如聊天机器人、推荐系统和自动编目软件,这些工具可以提高图书馆的效率和用户体验。然而,图书馆采用人工智能也带来了重大挑战,包括数据隐私问题、专业培训需求以及工作岗位流失的可能性。本文综合了当前的研究结果,对人工智能在现代图书馆中的作用提供了细致入微的理解,深入了解了人工智能的变革潜力以及充分发挥其优势所必须克服的障碍。
然而,一个限制是,AI系统需要大量高质量数据来最大限度地减少其结果的偏差。在外科领域实施AI的其他担忧是在数据处理和分析时存在保密风险和患者信息完整性丧失的风险。对此,世界卫生组织明确了其在医学领域使用AI的道德立场。他们强调根据正义、仁慈、患者自主和非恶意原则实施AI使用的重要性。关于在医学中使用AI的法律框架,世界上最先进的卫生系统已经出台了新的法规。然而,这一领域在不久的将来仍将不断发展(1,6)。近年来,AR和虚拟现实(VR)在改善外科领域的教学过程方面发挥了重要作用。这些日益普及的技术进步使医学生、住院医生和研究员能够沉浸在模拟和控制的场景中,从而获得培训过程中所需的手术技能和能力。AR 和 VR 的优势包括缩短学习曲线时间、通过不将真实患者暴露于学习目的来减少可能的手术并发症以及使用先前建立和验证过的课程 (8)。同样,
第四次工业革命(“工业 4.0”或“I4.0”)在很大程度上推动了先进制造技术和工艺的应用。工业 4.0 目前正在培育“智能工厂”的概念,这将大幅提高劳动生产率,使成本相对较高的国家在全球市场上具有竞争力,特别是使制造业能够以小批量生产高价值产品。事实上,工业 4.0 可以通过自动化、机器人和人工智能等高科技推动因素解决香港的劳动力挑战。麦肯锡全球研究院估计,全球自动化每年可使生产率增长 0.8% - 1.4% 1 。制造业中约 64% 的任务可以实现自动化。普华永道预测,到 2030 年,工业 4.0 技术可为全球经济贡献 15.7 万亿美元 2 。
1. 执行摘要。俄亥俄州坎顿市作为著名的工业中心有着悠久的历史,与钢铁和制造业息息相关。与其他拥有工业遗产的地区一样,这座城市面临着诸多挑战,包括后工业时代的投资撤资、系统性种族主义以及城市更新的错误尝试所带来的后果,这些挑战导致了高贫困率、低劳动参与率和低人均收入,种族和地理差距很大。斯塔克经济发展委员会 (SEDB) 提出了“重新连接坎顿”计划,该计划以现有资产为基础,创建了一套相互支持的、基于地点的干预措施,旨在促进包容性增长。这些项目将在东南坎顿 (SE Canton) 的七个相邻人口普查区内进行,黄金年龄就业差距 (PAEG) 为 10.1%,人均收入为 22,000 美元。1