墨尔本,澳大利亚:Amplia Therapeutics Limited(ASX:ATX),(“ Amplia”或“ Company”),很高兴在与美国食品和药物管理局(FDA)会议之后,对其计划的美国临床试验进行监管更新。该公司以前已经披露了美国一流的FAK抑制剂Narmafotinib的临床试验计划,并结合了化学疗法法属毒素,在晚期胰腺癌患者中。folfirinox是四种不同药物的混合物,是美国晚期胰腺癌的首选一线治疗选择。该公司以前已经报道了1个纳尔莫非替尼在胰腺癌的临床前模型中增强了Folfirinox的活性。D型会议是公司向FDA寻求有关临床开发活动的具体问题的机会。该公司寻求FDA关于修改临床试验方案修改的反馈,以前是FDA在2024年1月清除的研究新药物应用程序的一部分中提交的。具体来说,该公司正在寻求有关研究的剂量降低和剂量优化阶段的变化的评论,并在试验中删除了对Folfirinox的药代动力学评估。在公司收到的书面响应中,FDA指出,拟议的更改“显得合理”,为公司完成研究方案的最终阶段并在开始研究之前启动试验计划的最后阶段。Amplia首席执行官和医学博士Chris Burns博士评论说:“我们感谢FDA对我们临床试验方案的修改的深思熟虑的投入。这些更改将使公司能够以更耗时和资本效率的方式进行试验,而我们现在处于最终计划阶段,以在未来几个月内开始审判。”伯恩斯博士继续说:“这项临床研究的积极数据,再加上当前的重音试验的有希望的数据 - 纳尔玛夫替尼与吉西他滨和Abraxane®结合使用,将Narmafotinib定位为与全球治疗胰腺癌治疗的两种主要化学疗法方案相结合的首选药物。”
(纳米域形成)。10–13然而,纳米相转变会发生,而没有Poegma在侧链之间(分支,类似乙烯类)之间表现出形成 - 和/或链内氢键形成。然而,对于更长的侧链,由于侧链关联的统治和钉子侧链的临界长度以上的晶体域的占主导地位,Poegma均聚物会失去热重音特征。在过去几年中,PEG侧链结晶的特定特征引起了人们的重大关注,有6,14个表明对这种相当独特的聚合物的形态行为的持续兴趣。由无定形主链和可结晶的侧链组成的刷子共聚物可以分离成各种形态,从而导致具有有趣特性的共聚物。5,8,15–17在过去的几十年中,已经研究了这种刷子聚合物的结晶行为,根据通常最接近的模型,主链附近的主链和一小部分侧链构成了无晶相的侧链,而侧链则被晶状体链纳入了晶状体链中,由晶状体链分为圆形的分离。5,16被广泛接受,诸如主链刚度,连接组的性质以及侧链的长度等因素会显着影响侧链结晶。5,155,18在PEG侧链的情况下,报告的结果表明,与线性长的PEG [peo(PEO氧化物),大分子分子链相比,结晶温度T C,T C,T c,降低,超冷的程度和过冷的程度很大程度上取决于侧链的长度,而t c restry the t c restr y s t c restr y Bulth y Bulty y Bul ys Bur strument y ys 1 c。已显示出刷子共聚物中的结晶受到可结晶的钉链的挫败感的阻碍,这些钉子可以以互齿或端到端形式实现。
抽象背景/目的:视野研究对于理解细胞的重音至关重要,但是传统培养系统经常忽略实际植入物的三维(3D)结构,从而导致细胞募集和行为的限制,在很大程度上受重力控制。这项研究的目的是先驱一个新型的3D动态成骨细胞培养系统,用于以更临床和物理学相关的方式评估牙科植入物的生物学能力。材料和方法:在带有垂直定位的牙齿植入物的24孔盘中培养大鼠骨髓衍生的成骨细胞。使用3D旋转器进行控制的旋转,并应用了3个倾斜度。 细胞的附着,增殖和植入物表面上的分化是响应不同表面地形,物理化学特性和局部环境的响应。 结果:在经过测试的旋转速度(0、10、30、50 rpm)中,在30 rpm处观察到最佳成骨细胞附着和增殖。 在30 rpm的旋转速度和旋转速度之间发现线性相关性,在50 rpm下下降。 碱性磷酸酶(ALP)活性和矿化基质形成在新近酸蚀刻的亲水性表面上升高,与它们4周龄的疏水表面相比。 砂植入物显示出较高的ALP活性和基质矿化。 将N-乙酰半胱氨酸添加到培养基中增加了ALP活性和矿化。 结论:在优化的动态条件下,在体外成功附着,增殖和矿物质成骨细胞成功地附着,增殖和矿化。使用3D旋转器进行控制的旋转,并应用了3个倾斜度。细胞的附着,增殖和植入物表面上的分化是响应不同表面地形,物理化学特性和局部环境的响应。结果:在经过测试的旋转速度(0、10、30、50 rpm)中,在30 rpm处观察到最佳成骨细胞附着和增殖。在30 rpm的旋转速度和旋转速度之间发现线性相关性,在50 rpm下下降。碱性磷酸酶(ALP)活性和矿化基质形成在新近酸蚀刻的亲水性表面上升高,与它们4周龄的疏水表面相比。砂植入物显示出较高的ALP活性和基质矿化。将N-乙酰半胱氨酸添加到培养基中增加了ALP活性和矿化。结论:在优化的动态条件下,在体外成功附着,增殖和矿物质成骨细胞成功地附着,增殖和矿化。该系统区分了具有不同表面地形,润湿性和生化调制环境的植入物的生物学能力。这些发现支持开发3D动态牙齿植入物
3 TSMC,Hsinchu,Taiwan *同样信誉的作者(ECAS)增强视频质量对于在包括手机,电视和监视器在内的智能设备上获得了增强的用户体验至关重要。实用的硬件设计应在与带宽,区域和能源预算相关的严格限制下提供最小资源的高性能。在图像处理任务中,深入学习算法的广泛用法(包括超分辨率(SR)和降噪(NR))进一步强调了能量效率硬件解决方案的必要性。因此,新兴的关键要求是在实时和高分辨率方案中部署这些算法。但是,实现这一目标提出了几个挑战,如图20.1.1:1)高分辨率网络推断大大增加了由于其计算复杂性,低稀疏性和高精度要求而引起的功耗; 2)频繁的高精度数据交易到外部内存会导致与带宽使用相关的大量功率使用; 3)有效和灵活的机制对于支持各种网络结构和操作至关重要。域特异性加速器提供了一种有希望的解决方案来处理计算需求。总的来说,这些创新使NVE能够在0.46V时达到23.2吨/w的端到端能量效率,而面积的效率为12.0吨/mm 2的面积为1.0V。图20.1.2显示了整体体系结构,包括卷积(Conv)核心,计算机视觉(CV)核心和直接内存访问(DMA)模块。图20.1.3概述了DCIM核心设计和工作流。在这项工作中,提出了在3NM技术中制造的12B位数基于CIM的神经视觉增强引擎(NVE),其特征是:1)无重量的无重量数字计算机(DCIM)发动机,其重量切换率降低,以增强计算能力的功能; 2)卷积元素(CE)融合建立了工作负载平衡的管道架构,从而减少了外部内存访问和功耗; 3)自适应数据控制和带状优化机制支持DCIM中的卷积和转置卷积,并改善了利用率,并且对有效的数据遍历进行了优化的执行流。Conv Core包含11个阶段的管道CE,用于存储中间数据的功能映射存储器,CE融合接口和融合控制。a fine编译器分区将计算图分隔为时区域的循环和太空划分的条纹,以优化吞吐量和内存访问,然后在命令描述符中编码重量和设置。DMA将描述符解码并从DRAM或TCM中加载输入特征映射,以基于线的栅格扫描顺序为核心。在管道流中,每个CE从特征映射存储器和前面的管道阶段收集数据,并将其分配到DCIM宏。宏计算每个周期中的8组点产量,其中每组涉及72对12B元素。权重局部存储在18组行中,其特定集由行选择器选择。在实验结果中证明了使用更频繁使用的8b的12B激活和权重的必要性。在拟议的行开关更高的精度有助于产生更平滑的边缘和最小化超分辨率任务中的噪声。同样,在降低降噪任务中,更高的精度会导致较少的流动性,并产生更重的图像。DCIM的高效率很大程度上是由于记忆和逻辑之间的数据移动降低,这对于最大程度地减少了频繁的重量重音至关重要。先前的工作[1]引入了带有乒乓重量更新的2行DCIM设计,但除了dcim宏中的乒乓球重量存储外,它会引起重量重加载和其他SRAM的电源和面积。利用像素级网络中的权重较少,采用了18行DCIM来存储所有权重并消除重新加载。与[1]中提出的方法相比,这种方法分别将面积和功率降低了31%和28%。影响DCIM效率的另一个因素是重量排开关的频率,这是计算不同权重集合时发生的能量耗尽操作。延长行开关周期可以减少能源消耗,但它还需要在输入和输出缓冲区中存储更多像素,从而导致较大的面积在开销中。
计算机键盘的演变可以追溯到1868年克里斯托弗·拉瑟姆·肖尔斯(Christopher Latham Sholes)的打字机发明。雷明顿公司从1877年开始的打字机大众营销在其广泛采用中发挥了重要作用。几个技术进步,包括电视机和打孔卡系统,有助于早期计算机键盘的开发。1946年,ENIAC计算机在1946年使用了打孔器读取器,1948年BINAC计算机的机电控制打字机进一步巩固了这一连接。在1960年代引入视频显示终端(VDT)彻底改变了用户界面,使用户可以看到他们在屏幕上键入的内容。此启用了更快的数据输入,编辑和编程。通过电键盘传输的VDT的直接电子冲动可显着减少处理时间。到1970年代末和1980年代初,所有计算机都使用了电子键盘和VDT,而Qwerty布局今天从sholes的发明中继承下来,今天仍然很突出。雷明顿公司开创了打字机的质量生产,导致标准计算机键盘的发展。根据传说,Qwerty布局是由Sholes和James Densmore开发的,以克服机械局限性。原始设计通过分开通用字母组合来最大程度地减少钥匙。尽管已经发明了其他布局,例如DVorak键盘,但由于其效率和熟悉程度,Qwerty仍然是最受欢迎的。新兴的电动打字机进一步合并打字机和计算机技术。皇家伯爵之家和埃米尔·鲍多特(Emile Baudot)等发明家改进了电视机机器,是键盘技术的突破。在1930年代,新键盘结合了打字机和电报技术,从而导致了关键系统的开发,这成为了早期添加机器的基础。关键技术被纳入ENIAC等早期计算机,而后来的设计具有电力打字机和磁带输入。到1964年,麻省理工学院,贝尔实验室和通用电气之间的合作导致了Multics的开发,Multics是一个分布的计算机系统,鼓励创建用于用户界面的视频显示终端(VDTS)。在计算机中打字技术的演变始于引入电动打字机,这使用户能够在视觉上看到他们正在键入的字符,从而使文本编辑和删除更加容易。这项创新还简化了编程,并使计算机更容易访问。早期键盘是基于电视机或关键的基础,但由于电力机械步骤减慢了数据传输的速度而有局限性。VDT技术和电子键盘的出现通过允许直接电子脉冲传输并节省时间来彻底改变计算。到1970年代末和1980年代初,所有计算机都使用了电子键盘和VDT。1990年代看到了手持设备的出现,从HP95LX开始,该设备开创了移动计算。最初,手持设备具有小的Qwerty键盘,使触摸键入不切实际。随着PDA的演变为包括Web访问,电子邮件和文字处理,引入了笔输入。但是,一开始,手写识别技术还不够强大。键盘产生机器可读文本(ASCII),这对于索引和搜索至关重要。手写可生产“数字墨水”,它适用于某些应用程序,但需要更多的内存,并且不如数字键盘准确。早期PDA在商业上不可行。苹果公司于1993年发布的牛顿项目很昂贵,其笔迹认可也很差。研究人员Goldberg和Richardson开发了一种简化的系统,称为“ Unistrokes”,将字母转换为单笔票进行输入。1996年发布的棕榈飞行员引入了涂鸦技术,使用户能够输入资本和小写字符。其他非钥匙板输入包括MDTIM和JOT,但由于数据捕获的记忆力更多,而与数字键盘相比,它们具有相似的限制。计算机键盘的演变是一段漫长而有趣的旅程,跨越了近两个世纪。从带有电报机的不起眼的开端到我们今天使用的时尚,多功能设备,键盘进行了重大的转换以满足不断变化的用户需求。####早期的早期开发,电报机中使用了物理钥匙和开关来编码信息。这项技术为现代键盘奠定了基础。1800年代看到打字机和电报的进步,进一步完善了键盘设计。键盘布局继续随着发短信的兴起而继续发展,通常会利用Qwerty风格的软键盘。#### Qwerty和Qwerty布局以外的标准成为具有软键盘的标准,但是其他布局(例如Fitaly,Cubon和Opti)也存在。随着语音识别技术的提高,其功能已添加到小型设备中,但没有取代软键盘。####键盘的未来随着数据输入对于发短信和其他应用程序越来越重要,键盘设计正在调整。像KALQ键盘一样的创新,Android设备上可用的分屏布局,旨在改善拇指型体验。键盘的演变可以追溯到1868年,托马斯·休斯(Thomas Hughes)发明了用于电报的钢琴风格的键盘。早期的计算机终端出现在20世纪初期,加州海军研究人员和Konrad Zuse的可编程计算机使用旧打字机进行了修改。20世纪中叶锯键板成为计算中的主食,带有打孔机器是前体。创新在20世纪后期加速,包括IBM的Selectric打字机启发键盘设计和DEC的VT50终端,其中包含集成的键盘和屏幕。关键里程碑包括IBM PC普及了F键盘,苹果的Lisa引入了GUI和鼠标减少键盘依赖性,Microsoft的天然键盘会引发符合人体工程学设计的变化。21世纪带来了更多的多功能性和连接性,无线键盘超过了销售中的有线模型。在整个旅程中,打字仍然是输入命令和数据的有效和直观的方式,在20世纪后期推动了键盘无处不在。第一个大众市场打字机于1874年发布,将Qwerty布局固定为打字的标准。后来,IBM的Selectric(1936)引入了一种可以旋转和倾斜以打印字母的类型球,从而可以轻松更改字体。当计算机出现时,他们采用了打字机的打字机制,这些机制最终演变成专用的计算机键盘。在1950年代,打孔器被用于输入ENIAC等早期计算机的数据,这些计算机读取了用代表数据和程序说明的孔读取卡片。IBM 1050终端(1964)将打字机机制与桌子和调制解调器相结合,创建了一个集成的系统。DEC VT50(1967)带有键盘和CRT显示屏的视频终端,使用户可以在输出时看到输出。Xerox Alto(1970)介绍了图形用户界面(GUI),使用鼠标进行交互而不是文本命令,从而降低了键盘依赖性。尽管如此,键盘在个人计算中仍然很重要,尤其是在1970年代和1980年代PC进入房屋和办公室时。标准是由IBM PC的模型F键盘(1981)和Apple Lisa(1983)等有影响力的模型设定的,该模型集成了鼠标以进行图形相互作用。IBM模型M(1984)完善了PC键盘,确保了IBM PC和克隆的一致性。后来,微软引入了天然键盘(1994年),引发了人体工程学的设计趋势,而苹果简化了其iMac(1999)的简化键盘,开始向没有单独的光标垫或功能键的简约设计转变。开关测试人员有助于识别首选的机械开关。现代键盘不断发展,基于具有新功能的原始Qwerty布局。现代键盘的关键特征包括无线连接,专业,自定义,可移植性,RGB照明,集成输入和增强的键入功能。今天的键盘生态系统提供了针对特定用例的各种设计。喜欢重音字符,专门的软件从上下文定制中受益,以提高生产率。键盘配件增强了多功能性,人体工程学和样式:腕部休息会减轻压力,钥匙开关O形圈噪声噪音和自定义键盘个性化美学。人体工程学因素通过促进适当的姿势来减少键入应变:将键盘定位在肘部水平,避免弯曲手腕,将垫片用于笔记本电脑,并在长时间的课程后休息。遵循基本的人体工程学原理可以使计算机键盘长期安全使用。现在,让我们凝视着令人兴奋的键盘可能性:增强现实键盘,脑部计算机接口,智能手套键盘,触觉娱乐,灵活的电子墨水显示器,上下文自动版,无线功率和神经反馈。激进的新设计将与传统模型共存,因为核心机制已被证明是永恒的。由于其触觉效率,持久的键盘仍然是一个积分的计算机接口。我们可以以其他输入机制不切实际地将思想转变为命令和内容。早期计算机缺乏显示和鼠标,而键盘是唯一可行的界面。但是,即使出现了新的选项,键盘的生产力也会执行许多任务。计算机键盘由于其众多优势而仍然是计算中必不可少的一部分:由于它们在大多数计算机中的广泛可用性,它们熟悉,响应,多功能,生产力和无处不在。虽然语音或笔迹(如语音或笔迹)在某些情况下已成为可行的替代方案,但在键盘上打字的速度和准确性继续使其成为生产力的核心组成部分。人类与键盘之间的这种共生关系持续了近两个世纪,键盘适应和发展以适应不断变化的人类行为和技术进步。因此,键盘的设计反映了人类需求与技术能力之间正在进行的相互作用,这是无情驱动创新的缩影。