洛斯阿拉莫斯国家实验室是一家采取平权行动/提供平等机会的雇主,由 Triad National Security, LLC 为美国能源部国家核安全局运营,合同编号为 89233218CNA000001。通过批准本文,出版商承认美国政府保留非独占的、免版税许可,可以为了美国政府的目的出版或复制本文的已发表形式,或允许他人这样做。洛斯阿拉莫斯国家实验室要求出版商将本文注明为在美国能源部的支持下完成的工作。洛斯阿拉莫斯国家实验室坚决支持学术自由和研究人员的发表权利;但是,作为一个机构,实验室并不认可出版物的观点,也不保证其技术上的正确性。
摘要 - Quantum Computing(QC)是指通过量子力学(QM)继承和构建的新兴范式,具有巨大的潜力,可以解锁以前无法解决科学家无法解决复杂且计算上棘手的问题的非凡机会。近年来,QC的巨大努力和进步标志着与古典计算技术更有效地解决现实世界问题的重要里程碑。虽然近年来正在转移量子计算,但仍需要致力于将该领域从一个想法转移到工作范式。在本文中,我们进行了系统的调查,并对论文,工具,框架,平台进行分类,以促进量子计算并从应用程序和量子计算的角度进行分析。我们提出量子计算层,量子计算机平台的特征,电路模拟器,开源工具CIRQ,TensorFlow量子,ProjectQ,允许使用功能强大且直观的语法在Python中实现量子程序。之后,我们讨论当前的本质,确定开放挑战并提供未来的研究方向。我们得出的结论是,在过去的几年中,出现了许多框架,工具和平台,目前可用的设施的改进将利用量子研究社区中的研究活动。
传统上,光子设备的建模涉及求解光 - 膜相互作用和光传播的方程。在这里,我们通过使用量子计算机重现光学设备功能来演示另一种建模方法。作为例证,我们模拟了薄膜上的光的量子干扰。这种干扰可以导致通过薄膜的完美吸收或总传输光,这种现象吸引了对经典和量子信息网络中数据处理应用的关注。,我们将光子在干扰实验中的行为映射到Transmon的量子状态的演变,Transmon是IBM量子计算机的超导电荷矩形。实际光学实验的细节在量子计算机上无效地复制。我们认为,这种方法的优势在建模复杂的多光子光学效果和设备方面应该显而易见。
我们评估了量子计算在两个基本查询优化问题(连接顺序优化和多查询优化 (MQO))上的适用性。我们分析了目前基于门的量子系统和量子退火器(两种目前市面上可用的架构)上可以解决的问题维度。首先,我们评估了基于门的系统在 MQO 上的使用情况,MQO 之前已通过量子退火解决。我们表明,与传统计算相反,不同的架构需要进行复杂的调整。此外,我们提出了一种用于连接顺序问题的多步骤重新表述,使其可以在当前量子系统上解决。最后,我们系统地评估了我们对基于门的量子系统和量子退火器的贡献。通过这样做,我们确定了当前局限性的范围,以及量子计算技术对数据库系统的未来潜力。
[1] G. Brassard 等人。量子振幅放大与估计。当代数学,305:53–74,2002。[2] Y. Suzuki 等人。不带相位估计的振幅估计。量子信息处理,19(2):75,2020。[3] S. Aaronson 和 P. Rall。量子近似计数,简化。在算法简单性研讨会上,第 24-32 页。SIAM,2020 年。[4] D. Grinko 等人。迭代量子振幅估计。arXiv 预印本 arXiv:1912.05559,2019。[5] K. Nakaji。更快的振幅估计。 arXiv preprint arXiv:2003.02417,2020 年。[6] R. Venkateswaran 和 R. O'Donnell。具有非自适应 Grover 迭代的量子近似计数,2020 年。[7] DS Abrams 和 CP Williams。用于数值积分和随机过程的快速量子算法。arXiv preprint quant-ph/9908083,1999 年。[8] A. Montanaro。蒙特卡罗方法的量子加速。英国皇家学会学报 A:数学、物理和工程科学,471(2181):20150301,2015 年。[9] P. Rebentrost、B. Gupt 和 TR Bromley。量子计算金融:金融衍生品的蒙特卡罗定价。 Physical Review A, 98(2):022321, 2018. [10] S. Woerner 和 DJ Egger. 量子风险
量子算法为传统方法解决起来成本高昂的计算问题提供了有效的解决方案。现在,可以使用公共量子计算机(例如 IBM 提供的量子计算机)来运行执行量子算法的小型量子电路。但是,这些量子计算机极易受到噪声的影响。在这里,我们介绍了量子电路噪声和连通性的重要概念,必须解决这些概念才能在量子计算机上获得可靠的结果。我们利用几个例子来展示噪声如何随电路深度而变化。我们介绍了 Simon 算法(一种用于解决同名计算问题的量子算法),解释了如何在 IBM 的 Qiskit 平台上实现它,并比较了在无噪声模拟器和受噪声影响的物理硬件上运行它的结果。我们讨论了 Qiskit 的转译器的影响,该转译器将理想的量子电路适配到量子比特之间连通性有限的物理硬件上。我们表明,即使是只有几个量子比特的电路,其成功率也会因量子噪声而显著降低,除非采取特定措施将其影响降至最低。 # 2021 由美国物理教师协会独家授权出版。https://doi.org/10.1119/10.0006204
金刚石和最近的碳化硅中的自旋 S = 1 中心已被确定为可用于各种量子技术的有趣固态量子比特。金刚石中氮空位中心 (NV) 是研究较多的案例,被认为是适用于大多数应用的量子比特,但也存在重大缺点。最近的研究表明,SiC 中的双空位 (V Si VC ) ° 和 NV (V Si NC ) 中心可以克服许多缺点,例如与微电子技术、纳米结构以及 n 型和 p 型掺杂的兼容性。特别是,4H-SiC 多型体是一种广泛用于功率器件的微电子半导体,这些问题已经得到解决,并且大规模基板 (300mmm) 可供商业化使用。研究较少的 3C 多型体可以拥有相同的中心 (VV、NV),并且具有额外的优势,因为它可以在 Si 上外延,从而允许与 Si 技术集成。执行光学操控和自旋状态检测的光谱范围从金刚石中 NV 中心的可见光 632 nm 移至 SiC 中双空位和 NV 中心的近红外 1200 – 1300 nm(电信波长)。然而,还有其他关键参数对于可靠的信息处理至关重要,例如自旋相干时间、芯片上的确定性位置和受控缺陷浓度。在这篇评论中,我们重新审视并比较了金刚石中 NV 中心以及 4H 和 3C-SiC 中双空位和 NV 中心的一些基本特性。
适应性免疫通过调节抗原特异性反应,炎症信号传导和抗体产生,在动脉粥样硬化的发病机理中起着重要作用。但是,随着年龄的增长,我们的免疫系统经历了逐渐的功能下降,这种现象称为“免疫衰老”。这种下降的特征是增生性幼稚的B和T细胞的减少,B和T细胞受体库库减少,以及相关的分泌性分泌性疾病。此外,衰老会影响生发中心的反应,并恶化次级淋巴器官功能和结构,从而导致T-B细胞动力学受损并增加自身抗体的产生。在这篇综述中,我们将剖析衰老对适应性免疫的影响以及与年龄相关的B-和T细胞在动脉粥样硬化发病机理中所起的作用,强调需要针对与年龄相关的免疫功能障碍的干预措施,以减少心血管疾病风险。
缺乏纠错能力是阻碍科学家开发全尺寸量子计算机的障碍之一。纠正相关错误需要庞大而复杂的纠错方案,这些方案难以实施且成本高昂。在我的实验中,我研究了真实 IBM 量子计算机上量子计算中相关错误的普遍性,以提高对纠错的理解。我假设量子位在相邻时会出现相关错误,但在非相邻时不会出现相关错误。
Google、IBM 等国际公司正在推进大规模量子计算机的研发。量子计算机在某些领域比经典计算机拥有更强大的计算能力,比如深度学习、化学、密码学等。如果研发出能够运行量子算法的大规模量子计算机,那么目前广泛使用的密码算法的安全性可能会降低甚至被突破。Shor 算法已经被证明可以突破 RSA 和椭圆曲线密码 (ECC) 的安全性。RSA 和 ECC 能够使用多久取决于量子计算机的发展和 Shor 算法的优化 [1]。在 [2] 中,作者估计对于 n 位密钥的 RSA,Shor 算法可以应用 2 n + 2 个量子比特。Gidney 估计了改进的 2 n + 1 个量子比特的数量 [3]。Shor 算法也可以应用于椭圆曲线中的离散对数 (即 ECC)。在 [4] 中,作者通过估算解决椭圆曲线离散对数所需的量子资源,指出 ECC 比 RSA 更容易受到量子计算机的攻击。在 [5] 中,作者证明了