摘要:微观结构直接影响了材料的随后机械性能。在制造的零件中,详细过程设置了微观结构特征,例如相类型或缺陷和谷物的特征。在这一过程中,本文旨在了解TI6AL4V合金的定向能量沉积(DED)制造过程中微结构的演变。它阐明了时间相变形块(TTB)的新概念。对不同块中温度历史的这种创新分割使我们能够将通过3D有限元(FE)热模型计算出的热历史以及从DED过程获得的多层TI6AL4V合金的最终微结构。作为第一个步骤,对触发TI6AL4V合金的固相变换的机制进行了对技术的审查。这表明当前动力学模型不足以预测DED期间的微结构演变,因为报告了多个值以进行转换开始温度。其次,开发了一个3D有限元(Fe)热模拟,并使用DED过程对Ti6Al4V部分代表TI6AL4V部分进行验证。建筑策略促进了热量的积累,并且该部分表现出硬度以及性质和相数的异质性。在生成的热场历史中,选择了代表不同微观疗法的三个兴趣点(POI)。对热曲线的深入分析可以根据其扩散或位移机制来区分固相变换。与最新的状态相结合,该分析既突出了转换临界点的可变特征,以及根据温度值以及加热或冷却速率而激活的不同相变机制。通过对DED过程中每个POI的微观结构的演变进行彻底的定性描述来实现此方法的验证。因此,新的TTB概念被证明提供了基于Fe温度领域的最终微观结构的流程基础。
NCGSA 拥有 2 亿巴基斯坦卢比的研究基金。该基金将用于开展空间科学、技术和应用领域的研究活动,特别是地理信息科学 (GISc)。这一资助机会旨在促进从研究和技术到集成和业务的转变。这将有助于新的空间产品、流程和解决方案进入市场。
摘要:在这项工作中,通过通过记录和分析的离线数据来调整3轴笛卡尔运动学的限制,从而优化了具有锋利角的薄壁的生产,例如轴速度,加速度和X和Y轴的位置。该研究使用两种粉末材料(SS316L和IN718)使用激光进行了定向的能量沉积过程。用1毫米厚度获得薄壁,每层只有一个珠子,在90°处获得直/尖角。在调整位置参数G502以在Fagor 8070 CNC系统上定位精度后,可以在角落中获得最小的材料积聚的壁,并且在两种不同的精确的精度构造的0.11和0.24 mm之间,在0.11和0.24 mm之间具有恒定的层厚度和高度,并且具有恒定的层厚度和高度。通过确定编程速度的降低与定位的精度之间的正确平衡,以达到定义为墙角的点,速度为20 mm/s的速度为29%,速度为20 mm/s,速度为61%,速度为40 mm/s。墙壁显示出最小的缺陷,例如残余孔隙度,微观结构足够。
已研究了熔融 Si-Fe、Si-Ni 和 Si-Fe-Cr 合金的平衡相关系,这些合金中饱和了碳化硅 (SiC) 或石墨,这些合金是 SiC 快速溶液生长的候选溶剂。在 2 073 K 下测得的碳溶解度为:Si-(24.1-70.1) mol% Fe 为 0.19-6.6 mol%,Si-(30.0-85.0) mol% Ni 为 0.061-5.2 mol%,Si-(50-x) mol% Fe-x mol% Cr (x = 10.4-40.1) 合金为 1.1-3.9 mol%。假设碳原子被引入 Si-Fe、Si-Ni 和 Si-Fe-Cr 溶剂的间隙位置并阻碍溶剂原子之间的键合,我们采用准化学模型来评估每种合金中碳的活度系数。估算结果相当好地再现了测量的碳溶解度趋势。然而,使用亚规则溶液模型进行的估算通常会高估碳溶解度。因此,准化学模型可以很好地描述熔融硅-过渡金属合金中的碳行为。
使用两种不同的快速制造方法 - 电子束添加剂制造(EBAM)和激光净成型(镜头) - 用于制造NITI元素。以电线或球形粉末形式的初始材料的微观结构和马氏体转化温度。使用镜头技术制造的样品在2 26 C(以DSC中的最大Martensite峰值为最大值表示)时显示了马氏体转化温度(MTT),与原粉相比较低。在使用EBAM制造的样品的情况下,MMT达到2 19 C. Martensite和反向转化的峰弥漫,这是由于样品中晶粒尺寸和组成的差异。在500°C下的衰老2小时不仅在两个样品冷却过程中不仅导致R相分离,还导致了更敏锐和更高转化峰的形成,以及MTT向更高温度的转移。微观结构研究显示,柱状晶粒,靠近沉积元件和底板的界面,垂直于板表面生长。谷物沿着生长方向显示轴向纤维纹理。茎显微照片揭示了富含Ti中的细长细胞的存在。在此过程中形成富含Ti的颗粒导致基质中Ti的耗竭,并与初始NITI粉末相比有助于MTT的增加。透镜沉积样品在奥氏体中还包含较高的位错密度。压缩应力/应变样品样品的应变曲线仅显示马氏体的变形,而透镜沉积的变形在压缩模式下显示出几乎完全的超弹性效应,最高3%。
完整作者列表: Oliver, Sean;乔治梅森大学,物理和天文系;乔治梅森大学,量子材料中心 Fox, Joshua;宾夕法尼亚州立大学,电子材料与设备系,应用研究实验室;宾夕法尼亚州立大学,二维晶体联盟,材料研究所 Hashemi, Arsalan;阿尔托大学,应用物理系 Singh, Akshay;麻省理工学院,材料科学与工程系;印度科学研究所,物理系 Cavalero, Randal;宾夕法尼亚州立大学,电子材料与设备系,应用研究实验室;宾夕法尼亚州立大学,二维晶体联盟,材料研究所 Yee, Sam;乔治梅森大学,物理和天文系;乔治梅森大学,量子材料中心 Snyder, David;宾夕法尼亚州立大学,电子材料与设备系,应用研究实验室;宾夕法尼亚州立大学,二维晶体联盟,材料研究所 Jaramillo, Rafael;麻省理工学院,材料科学与工程系 Komsa, Hannu-Pekka;Aalto-yliopisto,应用物理系;奥卢大学,微电子研究部 Vora, Patrick;乔治梅森大学,物理与天文系;乔治梅森大学,量子材料中心
本章和以下各章描述了金属和合金中第二相沉淀颗粒的晶体学。本章的重点放在分析其晶体结构,组成和晶体取向与基质之间的技术方面。在技术上嵌入固体基质中的细质沉淀物的表征在技术上很困难。来自矩阵的信号始终阻碍来自沉淀物的信号。尽管即使是最先进的特征技术仍然不完整,但要评估与沉淀物晶体相关的经典理论中涉及的假设的有效性变得有可能。例如,最近的实验研究表明,成核过程中其晶体结构的演变似乎与所谓的经典成核理论相矛盾,而大小和组成的波动。最近的研究还表明,它们与基质的晶体取向关系通常不同于与界面晶格不匹配相关的能量考虑因素预测的晶体取向。此外,发现与基质的晶体取向关系是控制降水硬化大小的因素,与基于连续弹性理论计算的常规Orowan的强化模型相反,而无需考虑结晶学。
符合航空航天和国防工业的约束条件。在焊点可靠性研究中,使用有限元分析模拟似乎是一种有前途的解决方案;其结果是维持不断增加的资格测试成本。但是,这种模拟需要焊点所用合金的机械性能。到目前为止,文献中还没有关于机械本构模型、参数或疲劳规律的重要共识。由于这些合金的熔点低,其机械行为很复杂,即使在室温下也能达到可见的粘度域。此外,在这些合金的疲劳分析中不能忽略蠕变疲劳相互作用。因此,很明显,最终应用中的焊点微观结构非常复杂。