增材搅拌摩擦沉积 (AFSD) 是一种新兴的固态增材制造技术,其中材料逐层沉积。与基于熔合的增材制造工艺不同,AFSD 依靠旋转工具通过摩擦热和压力挤压和粘合原料材料,使材料温度低于其熔点,以消除与熔合相关的缺陷。由于其高沉积速率,它适用于大型结构制造。然而,AFSD 仍处于开发阶段,存在关于沿构建高度的硬度变化、缺陷形成和残余应力分布的问题。在本研究中,使用光学显微镜、维氏硬度测试和中子衍射检查了 AFSD 制造的结构。光学显微镜显示第一层和基材界面以及沉积边缘存在缺陷,而硬度测试表明沉积硬度从最后一层到第一层降低。中子衍射显示基材熔合区附近存在拉伸残余应力,而大多数沉积物中存在压缩残余应力。
光电探测、光化学、活性超材料和超表面等应用需要从根本上理解金属纳米系统中的超快非热和热电子过程。低损耗单晶金的合成和研究最近取得了重大进展,为其在超薄纳米光子结构中的应用开辟了机会。在这里,我们揭示了单晶和多晶超薄(厚度低至 10 纳米)金膜之间热电子热化动力学的根本差异。弱激发和强激发状态的比较展示了中观金中热化和非热化电子动力学之间违反直觉的独特相互作用,以及 X 点带间跃迁对带内电子弛豫的重要影响。我们还通过实验证明了热电子转移到基底中以及基底热性质对超薄膜中电子-电子和电子-声子散射的影响。测量到单晶金向 TiO 2 的热电子注入效率接近 9%,接近理论极限。这些实验和建模结果揭示了结晶度和界面对众多应用中重要的微观电子过程的重要作用。
Zhu,S.,Duan,R.,Chen,W.,Wang,F.,Han,J.,Xu,X.,Wu,L.&Wang,Q。J.(2023)。 在中红外的分层铂二硫化物中的Ultrastrong光学谐波产生。 ACS Nano,17(3),2148-2158。 https://dx.doi.org/10.1021/acsnano.2c08147在中红外的分层铂二硫化物中的Ultrastrong光学谐波产生。 ACS Nano,17(3),2148-2158。 https://dx.doi.org/10.1021/acsnano.2c08147ACS Nano,17(3),2148-2158。 https://dx.doi.org/10.1021/acsnano.2c08147https://dx.doi.org/10.1021/acsnano.2c08147https://dx.doi.org/10.1021/acsnano.2c08147
更正为:时效处理后 Al-Zn-Mg-Cu 铝合金中新 (Al, Zn) 3 Zr 沉淀物的形成及其对动态压缩的响应
已被尝试用作焊料合金的增强体,例如 TiO2、ZnO、SiC、ZrO2、Al2O3、Fe2O3、Si3Ni4、
免责声明:DSP Investment Managers Private Limited(简称“AMC”)在本材料中使用了公开信息,包括内部开发的信息。本材料中收集和使用的信息被认为来自可靠来源。但是,AMC 不保证任何信息的准确性、合理性和/或完整性。数据/统计资料用于解释证券市场的一般市场趋势,不应将其解释为任何研究报告/研究建议。该计划的投资组合可能会根据计划的计划信息文件的规定而发生变化。不保证本计划的投资者获得任何回报/潜力/资本保护/资本保证。过去的表现可能会或可能不会在未来持续,不应作为与其他投资进行比较的基础。本文件表明了该计划目前遵循的投资策略/方法/框架,未来可能会根据市场条件和其他因素而发生变化,未来可能会或可能不会相关,不应将其视为 AMC 或其附属公司对未来投资的招揽/推荐/保证。建议投资者咨询自己的法律、税务和财务顾问,以确定认购 DSP 共同基金计划单位可能产生的税务、法律和其他财务影响或后果。有关投资目标、投资策略、资产配置、计划特定风险因素的完整详情,请参阅计划信息文件和计划关键信息备忘录,可在资产管理公司和注册处以及投资者服务中心/资产管理公司网站 www.dspim.com 获取。
“我根据《2000 年信息自由法》给您写信,要求国防部提供以下信息:1. 目前申领即时养老金 (IP) 的武装部队退伍军人总数2. 年龄在 65 岁以下申领即时养老金的退伍军人总数3. 每年从养老金中领取少于 20,000 英镑、少于 15,000 英镑、少于 10,000 英镑和少于 5,000 英镑的即时养老金的退伍军人总数4. 自 2010 年以来,按年份细分,已向国防部退伍军人团队寻求无家可归支持的武装部队退伍军人总数以及国防部在支持中发挥作用的退伍军人无家可归案例总数。如果信息超出第 12 节中的合规成本限制,请告知如何减少请求,同样,如果可以澄清请求中的任何内容,请随时与我联系。” 2022 年 3 月 31 日,您提供了以下澄清:
磁性赛道存储器。[7,8] 自旋流可通过自旋霍尔效应 (SHE) 由电荷电流产生。人们对某些类别的高质量晶体化合物产生了浓厚的兴趣,这些化合物可产生源自此类材料本征电子能带结构的较大自旋霍尔效应:[9,10] 此类材料包括拓扑绝缘体 [11–13] 以及狄拉克和外尔半金属 [14–16]。然而,在这里,我们展示了非常大的自旋霍尔效应,它是由室温下由 5 d 元素和铝形成的高阻合金中的外部散射产生的,在实际应用中非常有用。自旋轨道相互作用 (SOI) 在自旋霍尔效应中起着核心作用,通常原子序数 Z 越大,自旋霍尔效应越大。此外,化合物或合金中组成元素的 Z 值差异越大,外部散射就越大,因此 SHE 也越大。[17,18] 在这方面,将铝等轻金属与 5 d 过渡金属合金化预计会产生较大的外部 SHE。[19] 在本文中,我们表明 M x Al 100 − x(M = Ta、W、Re、Os、Ir 和 Pt)合金不仅电阻率 ρ 发生剧烈变化,而且自旋霍尔角 (SHA) θ SH 和自旋霍尔 (SHC) σ SH 也随其成分 x 而变化。我们发现,在许多情况下,在临界成分下,会从高度无序的近非晶相转变为高度结晶相。此外,我们发现电阻率和 SHA 在外部散射最大化的非晶-结晶边界附近表现出最大值。为了支持这一猜想,我们发现最大电阻率的大小和相应的 SHA 随 Z 系统地变化。这表明 5 d 壳层的填充起着至关重要的作用,因为电阻率和 SHA 与 M 的 5 d 壳层中未配对电子的数量有关,因此当 M = Re 或 Os 时,ρ 表现出最大值(根据洪特规则,未配对 d 电子的数量分别为 5、6)。我们发现电阻率与 SHA 大致成线性比例,因此与 θ SH 成反比的功耗( / SH 2 ρ θ ≈ )在最大 SHA 时最小。[20] 因此,我们发现 M x Al 100 − x 是功率较小的优良自旋轨道扭矩 (SOT) 源
材料的质超塑性是一个重要研究的重要领域,因为它在流动机制领域中呈现出重要的挑战,并且因为它形成了商业超规模形成行业的基础,其中复杂形状和弯曲部分是由超塑性金属形成的[1,2]。众所周知,必须满足两个基本要求才能达到超塑性流。首先,超塑性需要很小的晶粒尺寸,典型的小于约10μm。其次,超塑性是一个具有晶粒边界(GB)滑动的扩散控制过程 - 作为主要流动机制 - 因此,它需要相对较高的测试温度,通常在或高于约0.7-0.8×T m,其中T m是材料的绝对熔化温度。同时,在过去的二十年中,金属材料的开发通过严重的塑料变形(SPD)进行了纳米化范围的超细晶粒,从而铺平了朝着超塑性领域的新发现铺平的道路[3,4]。实际上,
* 通讯作者:daw@clemson.edu 关键词:高熵合金 (HEA);成分复杂合金 (CCA);多组分合金;多主元素合金;等摩尔;FCC;缓慢扩散;空位迁移率;自扩散;示踪扩散;嵌入原子方法 (EAM) 摘要:我们基于 Foiles、Baskes 和 Daw(Foiles、Baskes 和 Daw Phys Rev B 1986)久经考验的嵌入原子方法功能,研究了由 Cu、Ag、Au、Ni、Pd 和 Pt 形成的 57 种随机等摩尔合金中的空位辅助扩散。我们回应了 W. Yeh 等人的建议,Advanced Engineering Materials,2004 年),即增加成分数量会导致随机等摩尔合金中的扩散“缓慢”。使用分子动力学 (MD) 模拟具有单个空位的随机合金,结合空位形成的计算,我们提取了每种合金中空位辅助扩散率。在开发和应用了几种可能的“迟缓性”评估标准后,我们发现只有少数合金(从 1 到 8,取决于迟缓性的定义)表现出迟缓扩散,而绝大多数合金的扩散速度更快,在相当多的情况下应该被认为是剧烈的(即比任何成分都快)。我们将扩散率与