抗性作物的抽象育种是控制疾病的可持续方法,并依赖于新型抗性基因的引入。在这里,我们测试了如何使用小麦转基因的三种策略来实现对现场真菌病原体的持久抗性。首先,我们在多年的长期野外试验中测试了春季小麦品种Bobwhite的高效,过表达的单转基因PM3E。与先前的结果一起,这表明转基因小麦系PM3E#2在总共九个野外季节中赋予了完全白粉病的耐药性,而不会对产量产生负面影响。此外,当越过精英小麦品种菲奥琳娜(Fiorina)时,PM3E过表达的PM3E对白粉病分离株的抗性对白粉病分离株有抗性。第二,我们在品种Bobwhite的背景下将四个超表达的转基因PM3A,PM3B,PM3D和PM3F上升,并表明在五个田间季节中,金字化线PM3A,B,D,F,B,D,F,F,b,d,f完全抵抗白粉病。第三,我们在三个野外季节中使用了三条大麦线的三条大麦线进行了现场试验,这些大麦线表达了成人的植物抗性基因LR34。Line GLP8在控制病原体诱导的HV-GER4C启动子的控制下表达LR34,并在该场中提供了部分大麦白粉病和抗叶锈蚀,对可能需要补偿性繁殖的产量组件产生了微小的负面影响。总的来说,我们的研究表明并讨论了三种成功的策略,以使用小麦的转基因在田间实现小麦和大麦的真菌疾病抗性。如果以可持续的方式应用,这些策略可能会赋予长期抵抗。
小麦是全球大多数人群的饮食蛋白质和卡路里的重要来源。它是世界上最大的谷物之一,占地215 m公顷。在全球范围内生产小麦的生产受到生物胁迫(例如害虫和疾病)的挑战。在经济重要性的50种小麦疾病中,三种生锈疾病是大多数小麦生产环境中最明显的产量损失的三种疾病。在严重的流行病下,它们可能导致粮食不安全威胁,因为新种族的新种族,人口动态的转变及其毒力模式,从而使小麦育种计划中的几个有效的抗药性基因易受伤害。这强调了从各种来源识别,表征和部署有效的抗锈基基因的必要性,这些基因和未来的小麦品种。遗传抗性的使用已被标记为环保,并遏制了锈病病原体的进一步演变。在小麦系中包括主要基因和小基因在内的多种生锈基因的部署可以增强抗性的耐用性,从而降低病原体的进化。下一代测序(NGS)平台和相关的生物信息学工具的进步已彻底改变了小麦基因组学。小麦基因组的序列比对是最重要的地标,它将使基因组学能够鉴定基因组选择(GS)研究中的标记相关,候选基因和增强的育种值。高吞吐量基因分型平台已经证明了它们在遗传多样性的估计,高密度遗传图的构建,解剖多基因性状以及通过GWAS(全基因组全基因组关联研究)和QTL映射以及R基因的隔离中更好地理解其相互作用。在小麦育种计划中,育种者的友好KASP分析的应用加快了精英管线中生锈等位基因/基因的识别和金字化。本评论涵盖了锈病病原体和当代小麦品种的进化趋势,以及它们如何
由于存在碰撞风险和人造物体的堆积,尤其是在低地球轨道 (LEO) 中,围绕地球运行的空间垃圾的增多已成为现役航天器和未来任务面临的重大问题。为了缓解这一问题,人们提出了新的解决方案。空间机器人已被纳入在轨服务,以帮助人类在太空环境中开展活动,特别是机器人操纵器可以在主动清除碎片方面发挥关键作用。本论文的目的是开发一个灵活的航天器动力学和控制模型,包括空间操纵器。采用混合方法实现主体和操纵器动力学。具体而言,操纵器运动方程是从拉格朗日公式中获得的,而主体动力学则用刚体的欧拉方程表示。机械臂是一个带有两个连杆的两自由度 (DOF) 平面操纵器。主要结构特性是在与文献中的空间机械臂进行比较后选择的。另一方面,JAXA 微型卫星 PROCYON 被用作航天器的主体。与 PROCYON 航天器一样,也考虑了金字塔形配置的四个反作用轮系统。所有建模和仿真阶段均在 MATLAB/SIMULINK 环境中进行。这项工作的另一个重要方面是卫星的柔性部分,由 PROCYON 航天器的四个太阳能电池板表示。使用 PATRAN/NASTRAN 进行有限元法 (FEM) 分析,以获得模型所需的自然模式和频率,并评估刚性和柔性部分之间的耦合矩阵。论文的第二部分是关于控制策略。两种不同的控制器用于机械手的运动和主体姿态控制。机械臂采用简单的比例-积分-微分 (PID) 控制器,目的是实现所需的关节角度位置,以便捕获碎片/目标。对于姿态控制,采用具有线性二次调节器 (LQR) 的主动抗扰控制 (ADRC) 作为控制律,以便获得快速稳定的响应,并消除作用于系统的所有内部和外部扰动。仿真环境中的令人满意的结果证明了 ADRC 执行姿态控制的能力,