此后,尽管 1970 年首次发布的深度剖析图是 GaAs 薄膜,但 GD-OES 技术在金属行业中得到了发展,现在广泛用于元素体分析和深度剖析,以表征导电金属涂层。然而,在过去十五年中,多种新仪器的发展扩大了 GD-OES 的应用领域,包括对先进材料的涂层和薄膜的表征,使其成为质量控制和工艺优化/监控的重要工具。辉光放电现在能够表征许多不同的材料,包括导电和非导电材料,涵盖从光伏(CIGS、钙钛矿……)到封装、从有机电子到储能(锂电池、燃料电池……)的广泛应用,并且是各种薄膜和厚膜沉积技术(等离子、电镀、阳极氧化等)的表征配套工具。GD-OES 也成为 XPS 和 SEM 的补充技术。
半导体发射极有可能实现陡峭的截止波长,这是由于它固有的带隙吸收和几乎为零的亚带隙发射,而无需掺杂。本文研究了一种基于锗晶片的选择性发射极,该发射极具有正面抗反射和背面金属涂层,用于热光伏 (TPV) 能量转换。光学模拟预测波长为 1 至 1.85 µ m 时,光谱发射率高于 0.9,亚带隙范围内的光谱发射率低于 0.2,且在带隙附近具有陡峭的截止波长,表明其具有优异的光谱选择性行为。间接测量的 Ge 基选择性发射极样品的光谱发射率与此高度一致,证实了这一点。此外,还从理论上分析了不同温度下将 Ge 基选择性发射极与 GaSb 电池配对的 TPV 效率。这项工作将促进基于半导体的选择性发射极的开发,以提高 TPV 性能。
微电子学是工程学的一个分支,涉及电子设备和系统的设计、生产和应用。晶体管、二极管、电容器和电阻器等微电子元件用于制造小规模集成电路 (IC)。集成电路广泛应用于计算机、智能手机、电视和其他电子设备。微电子学是现代社会的一项基本技术,它彻底改变了信息处理、通信、交通、医疗保健等许多领域。微电子设备使用半导体材料制造,例如硅、锗和砷化镓。这些材料经过精炼并切割成薄层,然后使用光刻技术对其进行图案化。所得层通过化学方法处理并覆盖金属涂层。最后,对设备进行测试和包装以供使用。微电子设备在各个领域都有广泛的应用。一些例子包括:* 计算机:微电子学是计算机架构的基本组成部分,包括处理器、内存、存储设备和输入/输出外围设备。 * 智能手机:智能手机本质上是小型计算机,严重依赖微电子元件来执行电话、消息、浏览、游戏等任务。 * 电视:电视也依赖微电子元件来显示节目、电影和游戏。 * 其他电子设备:微电子技术用于各种其他设备,如收音机、音乐播放器、游戏机和家用电器。微电子领域不断进步,开发出更小、更快、更强大的电子设备。这些发展还降低了设备成本,使更广泛的受众能够使用它们。 正确答案: 智能手机本质上是小型计算机,严重依赖微电子元件来执行电话、消息、浏览、游戏等任务。 * 电视:电视也依赖微电子元件来显示节目、电影和游戏。 * 其他电子设备:微电子技术用于各种其他设备,如收音机、音乐播放器、游戏机和家用电器。微电子领域不断进步,开发出更小、更快、更强大的电子设备。这些发展还降低了设备成本,使更广泛的受众能够使用它们。 EUV 光刻技术是晶体管的主要技术。
图1:VDW异质结构的无机组装。(a)几个从硅芯片伸出的悬臂的SEM显微照片。(b)示意图和(c)横截面高角环形暗场(HAADF)扫描透射电子显微镜(STEM)图像,显示了悬臂的多层金属涂层,可容纳2DM标本(样品中显示了多层MOS 2晶体中的样品)。(d)使用能量色散X射线光谱法在(c)中显示的区域的元素映射。(E)涂层过程后悬臂表面的AFM显微照片。均方根粗糙度值(r rms)在图像e上指示。 (F-H)采用的步骤将HBN晶体拾起到制造的悬臂上:(f)对齐,(g)接触和(h)升降。sem(l)和悬臂的光学(M)显微照片,拾取了厚(约40 nm)HBN晶体后。(i,j)拾取石墨烯晶体的步骤:对齐(I),接触和升降(J)。(n)光学显微照片显示了SIO 2上与石墨烯接触的悬臂(用虚线突出显示)。悬臂的灵活性可以准确控制层压过程。(k)石墨烯/HBN堆栈沉积在底部HBN晶体上。在整个底部HBN晶体被悬臂覆盖以选择性释放堆栈而不是将其捡起之前,层压过程要停止。(O)光学显微照片显示了氧化硅晶片上产生的异质结构,显示了较大的均匀区域。可以在补充第2节中找到有关其他样本的更多数据。
摘要。使用Magnetron-ION溅射,将一层金属钼1–2μm厚的金属钼沉积在环境温度下惰性氩气的大气中,该硅通过Czochralski方法生长的硅单晶表面。根据实验的结果,纯Mo层厚度为2μm,通过磁控蛋白的反应性溅射从高度纯的金属钼靶中沉积到冷硅晶片底物上,厚度为1.5 mm。仅在严格定义的钼金属沉积速率对应于体积中给定的巨质压力的情况下,它们的电导率和透明度也很高。溅射目标是直径为40 mm的磁盘,厚度为3-4 mm。产品处理的技术周期包括目标清洁的阶段。在不添加氧气的情况下将金属MO靶标溅射在纯氩AR中,可以促进具有非常好的电导率的不透明金属膜的形成。X射线衍射分析具有Mo金属涂层表面的硅单晶体显示了Moleybdenum-Silicon系统中的MO3SI和MOSI.65的化合物。硅硅硅酸盐被发现在温度范围1850÷1900°C的温度范围内经历同类肌转化,而低温品种 -MOSI2具有四方结构。 -MOSI2的高温形式具有六边形结构。使用原子扫描显微镜进行研究的结果表明,硅原子的链与MO原子连接,形成沿平行X和Y轴的MO结构的棱镜形成的锯齿形。
,因此对剥削的影响更具抵抗力。目前,已知涂料沉积的几种方法已知并广泛用于行业,例如,选择性激光熔化,使用微型和纳米大小的粉末和反应性爆炸喷涂的HVOF技术[1-3]。电沉积是另一种允许具有特定功能特性的现代涂料的方法。通过控制电沉积段 - 米,即电流,电压,温度和浴室位置,可以影响所获得的材料的结构及其特性。这种方法的本质是同时构建几种金属的可能性,以形成金属粉末的合金甚至掺入涂层的结构[4-18]。镍是在各种电化学过程中广泛使用的金属之一,因为它具有良好的腐蚀液。为了改善镍涂层,例如使用合金而不是纯元素[5,6,12],采用了各种修饰方法。对电解镍涂层的有趣添加剂可以是Rhenium,它是地球上最稀有,最昂贵的金属之一。金属rhenium类似于铂,通常被分类为贵金属。以其纯净的形式,是一种银色的高硬度金属。它重新填充金属合金,显着增加了它们的硬度和抗性。rhenium仅溶于氧化酸:硝酸和热浓硫酸。大量的RE用于生产特殊合金或超级合金,例如在航空业生产喷气发动机组件。rhenium还用于生产热电偶,加热元件,电触点,电极,电磁体,真空和X -Ray灯,灯光灯泡,金属涂层 - INS-及其及其在二氧化和氧化等反应中的催化剂[19-22]。由于RE属于“耐药金属”的群体,因此对于电裂解合金涂层的形成是必不可少的。关于含有rhenuim的合金涂料的电沉积的研究一直是许多研究的主题。这些材料可以通过电流和电沉积方法[23 - 25]产生。
从而更能抵抗开发的影响。目前,已有多种已知且广泛用于工业的涂层沉积方法,例如选择性激光熔化、使用微米和纳米级粉末的 HVOF 技术以及反应爆炸喷涂 [1-3]。电沉积是另一种可以生产具有特定功能特性的现代涂层的方法。通过控制电沉积参数(即电流、电压、温度和镀液成分),可以影响所得材料的结构,从而影响其性能。该方法的本质是可以同时共沉积几种金属以形成合金,甚至将金属粉末掺入涂层结构中 [4-18]。镍是广泛用于各种电化学过程中的金属之一,因为它具有良好的耐腐蚀性。为改善镍镀层,人们采用了各种改性方法,例如使用合金代替纯元素 [5,6,12]。电解镍镀层中一种有趣的添加剂是铼,它是地球上最稀有、最昂贵的金属之一。金属铼类似于铂,通常被归类为贵金属。纯净的铼是一种银色、有光泽且硬度较高的金属。它可精炼金属合金,显著提高其硬度和耐腐蚀性。铼只溶解在氧化性酸中:硝酸和热浓硫酸。大量铼用于生产特殊合金或超级合金,例如在航空工业中用于生产喷气发动机部件。铼还用于生产热电偶、加热元件、电触点、电极、电磁铁、真空和 X 射线灯、闪光灯泡、金属涂层,也可用作复分解和环氧化等反应的催化剂 [19-22]。由于铼属于“耐腐蚀金属”类,因此亚铁族阳离子的存在对于电解合金涂层的形成是必要的。含铼合金涂层的电沉积研究已成为许多研究的主题。此类材料可通过电流和化学沉积方法生产 [23-25]。