•钢:钢铁具有既定的鲁棒性,是结构完整性和耐用性的基准,所有子框架材料都应旨在匹配或超越以确保安全性和长期性能。这是一种具有高负载能力的常见材料,其易感性和高热电导率的敏感性,导致潜在的热桥。由于其拉伸强度和固有的延展性而具有螺钉拉力阻力。•GreengirtCMH®(复合金属混合动力):一种高性能的建筑材料,将FRP的耐腐蚀和绝缘性能与连续金属分量提供的结构弹性结合在一起。其独特的组成可确保稳健的螺钉固定。这允许直接使用螺钉,将螺钉挖掘成连续的金属结构支撑,以实现有效和可靠的负载分布。
本发明将运动场划分为一系列纵向或横向区域(取决于每个体育场的布局),由下部金属结构框架组成,该框架支撑金属托盘,托盘包含完整的农艺部分,包括自然部分、其嵌入式比赛设施(灌溉、土壤加热/冷却、土壤曝气等)和底部排水。这些部分或托盘通过一系列全自动转向架以精确的方式水平移动到维护室,转向架逐一抬起和移动这些部分,这些部分由底部(托盘下方)嵌入混凝土板的一系列轨道引导。该背景板的结构和几何形状使其可以作为任何类型活动的基础。
由于空气动力学、重量和成本限制,当前太空发射系统(例如火箭)的有效载荷尺寸很小。可展开结构允许在发射和在任务地点展开时处于折叠或收起状态。聚合物复合材料与当前的金属结构相比,既能减轻重量,又能整体提高特定机械强度。然而,聚合物复合可展开结构遇到的一个问题是收起配置下聚合物基质的应力松弛。在本研究中,评估了一系列不同的环氧树脂配方作为可展开复合材料的潜在基质树脂。与最先进的航空航天环氧树脂基质相比,预计一种含有强化添加剂的新型多功能环氧树脂在 1 年后应力松弛会减少 70%。
摘要:不存在一种自动产生电子纹理的合适连接方法。超声焊接可能是一个很好的解决方案,因为它可与无孔焊料一起使用,从而避免了纺织品集成电线的含量。本文介绍了对印刷电路板(PCB)的电子纹理超声焊接的详细过程。目的是了解影响连接的影响因素并确定相应的焊料参数。各种测试方法用于评估样品,例如对微结构的直接光学观察,脱皮的拉伸测试和接触电阻测量。通过降低工作温度和超声时间的时间来增加接触强度。较低的工作温度和减少的超声时间会导致更均匀的金属结构,而缺陷较少,从而改善了样品的机械强度。
纳米技术的快速发展和纳米材料合成方法的不断改进,使其具有特殊的可控形状、尺寸、结构和物理化学性质,从而将其应用范围扩展到工程、能量学、光子学、等离子体学、生态学和其他重要方向。1 如今,纳米材料在广为人知的生物医学领域的应用试验非常有前景,例如牙周病学、牙髓病学、早期诊断、治疗诊断学、温控药物释放和再生过程刺激甚至局部热疗。2 – 4 纳米级金属结构(尤其是银)的行为研究对于上述目的具有重要意义 5,6,因为它具有独特的物理化学、生物、催化和杀菌性能。7 – 10 这些特性在局部表面等离子体共振 (LSPR) 条件下尤其明显。 11 LSPR 效应
航天领域在运载火箭和卫星的建造中广泛使用粘合剂粘合。与许多其他领域的情况一样,粘合剂在这些应用中的使用与复合材料的使用密切相关。虽然在太空竞赛开始时,运载火箭和卫星主要由金属制成,但复合材料整体结构部件在 20 世纪 70 年代开始成为常态,取代了许多(但不是全部)金属结构。这种使用是由于环氧树脂与玻璃和硼纤维的结合,这提高了复合材料的强度和稳定性,尽管其使用仍然仅限于整流罩和支架等次级结构。在 20 世纪 80 年代,碳纤维的使用开始成为常态,并开启了复合材料在主要结构部件、整体结构或夹层板中的使用。如今,许多火箭包括完全粘合的复合材料级,用作储罐,将推进剂冷却至低温。其中一些应用如图 1.13 所示。
摘要 — 有源植入式医疗设备的密封和非密封封装通常由氧化铝等陶瓷制成。丝网印刷 PtAu 糊剂是功能结构最先进的金属化方法。由于 Au 在热暴露下会发生固态和液态扩散,焊接时间有限;否则金属结构容易分层。此外,研究表明,带焊料的 PtAu 会在 37.4 年后失效。我们建立了一种氧化铝薄膜金属化工艺来克服这些缺点。金属化由溅射铂和钨钛制成的底层粘附层组成,以增加与氧化铝基板的粘附强度。由于金具有较高的扩散趋势,我们避免在这项工作中使用金。相反,所使用的材料具有相对较低的扩散特性,这可能会提高组装和封装过程中的长期机械性能和可用性。
近年来,半导体过程技术的演变继续缩小大型集成电路中的临界维度[1-3]。高级芬费逻辑过程已经变得更加复杂,可以在多功能和更强大的SI芯片中实现更紧密的晶体管。反应性离子蚀刻步骤通过等离子体增强[4-5]在高级纳米级过程中不可避免地实现高纵横比结构,这对于高包装密度电路至关重要[6]。对于超过45nm的CMOS技术节点,晶体管门从带有二氧化硅的常规聚硅门变为高K金属栅极堆栈[7-8]。这种变化不仅使设备更容易受到血浆诱导的损害的影响,而且可能导致对高K介电层的潜在潜在损害[9]。在最先进的FinFET制造过程中,不可避免地会产生较高的等离子诱导充电事件的RF等离子体步骤,例如蚀刻,沉积和清洁过程,这会产生较高的频率[10]。可能会在金属结构上进行正充电和负电荷。随着这些电荷经过预先存在的金属线和触点制成的导电路径,通过电路的脆弱部分进行了不良放电,尤其是通过晶体管栅极介电介电出现可能会带来重大的可靠性问题。例如,在干燥的蚀刻步骤中,散射在反应表面上撞击离子和溅射材料会导致散装鳍中更多的缺陷[11-12]。为了避免等离子充电事件导致电路不可逆转的损害,给出了限制金属结构尺寸的设计规则。减轻PID的另一个例子包括使用保护二极管,这可能会使血浆充电电流从敏感电路中移开[13]。引入原位蒸汽产生(ISSG)氧化门报道,据报道提高其对血浆损伤的耐受性[14]。此外,还发现修剪腔室和修饰PECVD-TI沉积过程可减轻血浆诱导的损伤[15]。这些方法中的大多数会导致电路设计灵活性或处理权衡的不良限制。