Geagea Elieve,Daniel-Lopez,Luca Giovanelli,Laurent Nony,Christian Loppacher等。天文台C,2024,128(21),pp.8601-8610。10.1021/acs.jpcc。04729690
Yuchan Zhang和Qilin Jiang使用泵探针成像技术检查了嘴唇形成机制。他们强调了飞秒激光脉冲塑形(考虑时间/频率,极化和空间分布)如何有效地制造高质量的嘴唇。他们还探索了嘴唇的各种应用以及塑造超快速激光器以进行高效,高质量处理的重要性[16]。Hongfei Sun,Jiuxiao Li和Mingliang Liu回顾了Lips在生物医学应用中的作用。他们讨论了激光参数的影响,例如能量,脉冲计数,极化和脉搏持续时间,对嘴唇的产生。本综述还介绍了飞秒激光修饰的嘴唇如何应用于功能表面,控制表面润湿性,细胞定植和增强的摩擦学特性[17]。
激光吸收是激光材料加工的基本作用之一。吸收值与计算过程效率相关,并预测对日益使用的激光剂的材料对材料的影响。但是,吸收测量可能是一项复杂的任务。在金属的高温下,由于动态表面和温度测量所需的通常未知的发射率,仅可用有限的实验数据。模型是为了预测不同温度下的吸收,这些温度在某些制度中取得了成功,但通常在其他方面失败。为了改善理论模型,需要对高温金属表面进行实验测量。因此,在这项工作中,使用加热激光器提出了一种辐射测量方法,以创建金属熔体池,同时通过第二个测量激光束测量温度和表面反射。从文献中知道的一般趋势可以通过测量值确认,而吸收值倾向于在升高温度下散射。但是,可以观察到趋势。在熔化和沸腾温度之间,在35%至38%的范围内看到了略有吸收的增加。这些值表明必须考虑频带间和内标的吸收来解释该制度中的吸收。在升高的温度下,内预预知是主要的吸收机制,在非常高的温度下达到超过45%的吸收值。
金属表面的基本物理特性,例如原子弛豫和表面重建,或电子工作函数长期以来一直是使用密度功能理论(DFT)的第一个原则电子结构研究的靶标。在最新的方法中,超级细胞近似中有限厚度的薄金属纤维的平板计算用于模拟半插线的固体表面。在无限厚的平板的极限下,恢复了隔离表面的所需极限。然而,使用计算考虑因素决定的金属表面的薄板模型,平板的两个表面将相互作用,并产生量子大小效应,1从将长距离电子状态置入固定厚度的平板。金属中的弗里德尔振荡可以延长长距离2,这表明计算上棘手的厚板可能需要计算融合到半限定的体积表面。将平板形成能定义为平板的相对能量相对于相同数量的原子的大量参考能(假设平板的两个相对表面相同),将平板E表面(n)的表面能与n个原子层的表面能(N原子层) - 在孔中裂解的能量,可以写成水晶 - 可以像晶体中一样:
Organic electrochemical transistors (OECTs), [16,18–27] is currently one of the most studied organic electronic devices and is explored in various applications, such as in fully printed logic circuits, [16,26] active matrix addressed displays, [17] dis- play driver circuits, [19] sensors, [22,23,28–33] neuromorphics, [24] just仅举几例。可以使用不同的打印技术,例如丝网印刷,[19,21] 3D打印,[30]喷墨打印,[34]和其他流程来通过具有成本效益的协议来制造。[35,36]基于OECT的逻辑门和电路也进行了广泛的研究,[35,37-40],其中逆变器作为任何组合逻辑电路的基本组件都起着关键作用。通过采用基于OECT的逆变器[16,26,35]作为高级电路的基本组成部分,可以实现各种形式的基于OECT的数字电池[16,24,35]。在有机电子设备中,通过考虑针对目标的最终应用,在低电压和低功率下运行的电路是完全需要的。通过降低电路的操作电压率,可以最大程度地减少电压应变和降解风险。[16]然后,这允许长时间的操作寿命,与其他技术平台的简单集成以及与通信基础架构的连接。例如,在物联网(IoT)应用程序中,为了降低使用大量电子组件在紧凑型电路中使用大量电子组件的整体功耗,要求对单个逻辑组件的有效使用来扩展IoT生态系统。要意识到这样的电路,必须降低系统元件的操作电压水平。由于逆变器是逻辑电路的关键要素,因此最终电路的工作电压范围可以在很大程度上降低
1 . 长春理工大学跨尺度微纳制造教育部重点实验室,长春 130022 2 . 长春理工大学中国国际纳米处理与制造研究中心,长春 130022 摘要 金属是日常生活中不可或缺的工程材料,超疏液性金属表面(超疏水、超疏油、水下超疏油和滑溜特性)的研究近年来备受关注。大自然是一位魔术师,赋予每一种有机生命体独特的优势。研究人员通过各种方式创造出了大量仿生超疏液金属表面,这些仿生超疏液金属表面在自清洁、耐腐蚀、防结冰、减阻等应用方面表现出优势。本文报道了仿生超疏液金属表面的具体制备方法及应用。最后对仿生超疏液金属表面尚存的挑战及未来发展前景进行了初步分析,希望对拓宽金属的潜在应用范围及未来金属基先进功能材料的研究提供有力的参考。
●使用激光(KR1358332)的金属表面抛光方法●使用波纹管(KR1425410)激光加工设备●激光光头(KR1469645)●激光加工的光头(KR1517602)
Merul Finishing (ISSN 0026-0576) 由 Elsevier Science Inc. 按月出版,一月和五月有特别版(每年十四期),地址为纽约州纽约市美洲大道 655 号,邮编 10010。Metal Finishing 向美国合格的金属精加工商免费开放。对于供应商、顾问和其他与该领域相关的人员,每年的订阅费用(包括一本“金属精加工指南和目录”和“有机精加工指南和目录”)为美国 60.00 美元、加拿大和墨西哥 84.00 美元。价格包括邮费,如有变更,恕不另行通知。对于其他国家/地区或其他信息,请联系 Metal Finishing 客户服务部门,地址为 P.O. Box 141, Congers, N.Y. 10920-0141.。免费电话(针对美国客户):1-800-765-75 14。美国境外。致电 914-267-3490。传真 914-267-3478。电子邮件:Metal@Camheywest.com。《金属表面处理》的单本(指南和目录除外):美国境内 5.00 美元。期刊邮资在纽约和其他邮寄处支付。