本报告描述了钙钛矿 - 硅孔串联串联太阳能电池的发展。串联太阳能电池技术有可能实现效率,从而将当今的太阳能电池板提高了多达50%的相对,从而降低了太阳能设施的成本并降低了加利福尼亚纳税人的太阳能成本。在开发机械符合的导电粘合剂中,还可以进行进步,以将细胞无银色的链链变成强大的模块。当太阳没有直接闪闪发光,提高整体系统效率并降低太阳能的成本和资源强度时,细胞和体系结构的进步有望提高太阳能装置的能量产量。这项技术极大地促进了加利福尼亚的规定能源目标,以减少温室气体排放,满足可再生能源目标并促进更清洁的环境
深层的下次波长激光器(或纳米剂)高度要求在纳米级的紧凑芯片上生物成像和感测。在可见范围内,所有三个维度短的单粒子纳米仪的开发的主要障碍之一是高激光阈值和由此产生的过热。在这里,我们在Cuboid CSPBBR 3纳米颗粒中阐述激子 - 孔子凝结和镜像MIE模式,以在其超小为0.53μm的可见波长下从其超小为0.53μm的可见波长(从其超小为0.53μm)(≈0.007μm3或≈λ3 /20 /20)实现。通过直接构造具有相似材料参数的相应的一维和二维波引物系统,证明了来自所有三个维度的纳米腔的极化性质。这种深层的亚波长纳米震剂不仅是由激子结合能的高值(≈35meV),re骨指数(低温下的2.5)和CSPBBR 3的发光量子产率,而且还通过对MIE弥补的优化而通过质量取得了良好的量子的优化。此外,最佳激光条件的关键参数是CSPBBR 3中的自由光谱范围和声子频谱,该光谱控制了极化子凝结路径。这种化学合成的胶体CSPBBR 3纳米酶可能会在任意表面上放置,这使它们成为与各种芯片系统集成的多功能工具。
有效的光伏设备必须是有效的光发射器,才能达到热力学效率极限。在这里,我们通过利用光子回收的显着益处来展示钙钛矿光伏作为明亮的发射器的前景,这实际上可以通过杀戮的界面淬灭来实现。我们通过设计具有长(〜3 nm)有机垫片的多量子井结构的辐射和稳定的钙钛矿光伏设备,并在钙钛矿顶部接口处具有烯烃分子。我们的L位点交换过程(L:屏障分子阳离子)可以形成稳定的界面结构,尽管屏障较厚,但仍具有中等构造的性能。与流行的短(约1 nm)LS相比,我们的方法通过光子回收的递归过程提高了辐射效率。这导致了具有高光伏效率的辐射性光伏的实现(LAB 26.0%,证明为25.2%)和电致发光量子效率(峰值为19.7%)(峰值为19.7%,17.8%,在1-拟合等效量)。此外,基于烯铵的量子井的稳定晶体能够使我们的设备具有高效的高效性,以超过1000 h的运行和> 2年的存储空间。
我们证明,可以设计中红外跨带过渡的吸收饱和,以10-20 kW cm 2的中等光强度和室温下。该结构由一系列具有明智设计的253 nm厚的GAAS/ALGAAS半导体异质结构的金属 - 气管导体 - 金属金属斑块组成。在低入射强度下,结构在强光 - 耦合方面起作用,并在接近8.9 L m的波长下表现出两个吸收峰。饱和作为向弱耦合方案的过渡,因此,在增加入射强度时向单峰吸收。与耦合模式理论模型进行比较解释了数据,并允许推断相关的系统参数。当泵激光器在空腔频率上调谐时,随着入射强度的增加,反射率会降低。相反,当激光器以极化频率调谐时,反射性非线性会随着入射强度的增加而增加。在这些波长下,系统模仿了MID-IR范围内可饱和吸收镜的行为,这是当前缺失的技术。
摘要:钙钛矿太阳能电池 (PSC) 引起了越来越多的研究兴趣,但其性能取决于材料的选择和所用的工艺。这些材料通常可以在溶液中处理,这使得它们非常适合卷对卷加工方法,但它们在环境条件下的沉积需要克服一些挑战以提高稳定性和效率。在这篇评论中,我们重点介绍了钙钛矿材料以及空穴传输层 (HTL) 和电子传输层 (ETL) 材料的光子固化 (PC) 的最新进展。我们介绍了如何使用 PC 参数来控制钙钛矿 HTL 和 ETL 层的光学、电学、形态和结构特性。强调这些进步对钙钛矿太阳能电池的重要性可以进一步凸显这项研究的重要性,并强调其在创造更高效和可持续的太阳能技术方面的重要作用。
2,3、4,Eui Jyhu Hyuk 5,Genjin,6,Chan Su Moon 1,6、1、7、1,Mohammed,Na Wanhese Lee,3,Nam Joong 6,Miguel Anaya 8,Samuel D. Stranks 2:8
载体选择性ETL和HTL对于提取和运输电荷至关重要,同时最大程度地减少了界面电荷重组。在配置的钙钛矿太阳能电池中,钙钛矿层沉积在ETL层的顶部。9因此,ETL层的质量和特性直接影响光吸收钙钛矿层的性质。因此,开发和优化ETL层已成为研究的热门话题。最初,由于其合适的光电特性,TIO 2被广泛用作钙钛矿太阳能电池中的电子传输层。然而,它具有卵形照明下的光催化特性,需要大约500 1 c的高温退火以实现适当的结晶度,从而使该材料不适合用于PSC的升级和商业化。3,10–12为了克服这些缺点,已经研究了替代的N型金属氧化物,应允许低温处理,成本较低,应提高稳定性。13–17
摘要在过去的十年中,基于金属卤化物钙钛矿(MHP)半导体的太阳能电池的性能飙升,现在与已建立的技术(如结晶硅)相媲美。然而,MHP半导体的最有希望的实施是在一个串联的太阳能电池中,该电池有望并确实提高了更高的功率转换效率。MHP的可调带隙使它们独特地放置在为一系列不同的窄带隙吸收器中提供这些高效串联太阳能电池。基于含有宽带的甲基铵(> 1.7 eV)吸收器顶部细胞的串联设备的效率超过30%,这是令人印象深刻的成就1。尽管如此,基于无甲基铵宽带隙吸收器顶部细胞的串联设备尚未达到30%的效率里程碑。与含有甲基铵的含有和较窄的带隙对应物相比,无甲基铵的宽带隙MHP的性能特别差,这说明了串联细胞技术的更大进步的显着范围。在这篇综述中,我们专注于无甲基铵的MHP。我们强调了这些材料所面临的独特挑战,包括当前限制其开路电压和效率远低于其热力学限制的能量损失途径。我们讨论了该材料系统开发的最新进展,它们在串联光伏技术方面的表现,并突出了似乎特别有前途的研究趋势。最后,我们建议未来的途径探索以加快宽带隙MHP的发展,这反过来又将加速基于这些材料的串联太阳能电池的部署。
CS 0.05 FA 0.79 MA 0.16 /nio X /ITO(黑色),多余的PBI 2 CS 0.05 FA 0.83 Ma 0.16 /nio X /ITO(蓝色)和多余的FAI < /div < /div < /div < /div>
2D金属卤化物钙钛矿(MHP)以其多样化的晶体结构而闻名,允许其集成的有机和无机性/功能,3个吸引了ScientiC社区,其在Photovoltaics,4 - 6 Emitters,4 - 6 Emitters,7,8和传感器中具有巨大的潜力。9 - 11个专门阐明其复杂性能的广泛研究导致了设备性能的改善,从而推动了技术进步的界限。脱离了传统的信念,即杂交钙钛矿独家存在于结晶状态下,这种变革性观察出现了,在示例性的2d MHP中发现了玻璃形成[(s) - ( - - 1-( - )-1-(1-甲基甲基)2 pbbr 4(常见于SNP),snp and snpe s snpe and snpbbr 4(snpred as s snpe)澄清异构体的选择)12,13和一系列3D有机金属骨滑石14通过低温熔化的液化时间表(分钟尺度)。12,13,15 MHP的玻璃状态具有扩展其性能范围的潜力,尤其是由于相对于晶体状态的短和远距离顺序的变化,类似于其他玻璃半导体中观察到的情况。16此外,在玻璃状和晶状状态之间可逆切换的能力12开设了用于MHP应用的新途径,包括内存,17,18