摘要,我们根据深钢筋学习的应用(DRL)提出了范式控制流体流体的转变。此策略正在迅速在机器学习社区中传播,并且以与非线性控制理论的联系而闻名。DRL的起源可以追溯到最佳控制对非线性问题的概括,在连续公式中引导到Hamilton-Jacobi-Bellman(HJB)方程,DRL旨在提供离散的,数据驱动的近似值。DRL中唯一的先验要求是定义瞬时奖励,以衡量系统处于给定状态时动作的相关性。然后将值函数定义为预期的累积奖励,这是最大化的目标。通过神经网络近似控制动作和值函数。在这项工作中,我们通过参数分析在一维[4]中控制了DRL和重新发现我们最近控制Kuramoto-Sivashinsky(KS)方程的结果。
在复杂而充满活力的股票市场格局中,投资者试图优化收益,同时与价格波动相关的微型风险。已经提出了各种创新方法,以通过考虑历史趋势和社会因素来实现高利润。尽管取得了进步,但预测市场动态仍然是一个持续的挑战。这项研究介绍了一种新颖的深入增强学习(DRL)体系结构,以有效地预测股票市场的回报。与需要手动功能工程的传统方法不同,拟议的模型利用卷积神经网络(CNN)直接处理每日股票价格和财务指标。该模型通过用卷积层替换传统的Q-表,解决了培训期间过度拟合和数据稀缺问题。优化过程最小化了平方误差的总和,从而提高了词典的准确性。实验评估证明了该模型的鲁棒性,在短期和长期视野中,在买卖策略上实现了67%的方向准确性。这些发现强调了该模型在浏览复杂市场环境中的适应性和有效性,从而在财务预测方面取得了重大进步。
钢筋混凝土结构是沿海基础设施的重要组成部分,为周边自然环境和城市人口的安全和繁荣奠定了基础。然而,这些结构越来越受到氯离子腐蚀的威胁,氯离子腐蚀是导致其恶化的主要因素,尤其是在海洋环境中 1,2 。氯离子渗透混凝土,导致钢筋腐蚀,破坏结构完整性,缩短这些基础设施的使用寿命。氯化物侵入受到周围环境条件(包括气候变化)的广泛影响 3 。此外,极端事件和海平面上升导致此类结构的荷载制度加剧,从而增加了需求 4 。最后,新建筑或大规模重建活动的实施损害了气候缓解和环境保护目标 5 。
该领域将机器人技术和机器学习合并以开发自适应系统,使机器人能够通过反复试验和错误学习复杂的技能,例如抓握,拾取,放置和组装,从而增强灵活性和概括。
摘要 - 本文提出了一种新颖的方法,将深钢筋学习(DRL)与常规的虚拟同步发电机(VSG)集成在一起,以解决微网(MG)控制的双重目标;频率调节和精确的主动功率共享。mgs通常由多个基于逆变器的分布式生成剂(IBDG)组成,这些生物(IBDG)通过不同的线阻抗并行连接。VSG的常规活动电源循环(APL)遇到明显的稳态频率误差,因为岛岛操作期间的负载增加/减小。为了减轻此问题,将次级控制器(如比例积分(PI)控制)添加到APL中以调节IBDGS的频率。但是,当每个IBDG连接馈线的阻抗值不匹配时,PI控制会损害功率共享功能。为了消除频率错误并同时实现准确的功率共享,本研究采用了基于DRL的策略。代理商从微电网中的每个IBDG收集状态信息作为输入,并使用制定的奖励功能同时满足这两个目标。在MATLAB/SIMULINK设计的两连电微电网系统中证明了受过训练的代理的性能,并与传统方法进行了比较。
1 Wellcome Sanger Institute,Wellcome Genome Campus,英国剑桥; 2个开放目标,英国欣克斯顿的惠康基因组校园; 3欧洲生物信息学研究所(Embl-ebi),欧洲分子生物学实验室,英国剑桥市惠康基因组校园; 4美国剑桥市的布里斯托尔·迈尔斯·斯奎布(Bristol-Myers Squibb); 5英国布里斯托尔布里斯托尔大学人口健康科学系的医学研究委员会(MRC)综合流行病学部门; 6 NUF领域人口健康系临床试验服务部门和流行病学研究部门(CTSU),牛津大学,牛津大学,英国; 7医学研究委员会人口健康研究部(MRC PHRU),NUF领域人口卫生系,牛津大学,牛津大学,英国; 8冰岛心脏协会,冰岛Kopavogur; 9冰岛冰岛大学医学院,冰岛雷克雅未克; 10约克生物医学研究所生物学系,赫尔约克医学院,约克大学,约克大学,英国
摘要。我们提出了一种适合深入加强学习(DRL)问题的新颖算法,该算法利用信息几何形状实施战略性和选择性遗忘。我们的方法旨在解决DRL的首要偏见,并在顺序决策框架内提高适应性和鲁棒性。我们从经验上表明,通过包括利用Fisher Information Matrix来实现的选择性遗忘机制,与仅专注于学习的传统DRL方法相比,人们可以获得更快,更健壮的学习。我们的实验是在流行的DeepMind Control Suite基准上执行的,可以加强该想法 - 已经存在于文献中 - 忘记是学习的基本组成部分,尤其是在具有非平稳目标的情况下。
摘要:在这项研究中,使用复合深度强化学习优化了投资比率,并学习了使用过去汇率的财务交易策略。当前,关于机器学习到财务的应用的研究正在如火如荼地进行。复杂的兴趣加强学习是一种旨在学习最大化利润率的复杂利益影响的增强学习的框架。在复合利息增强学习中,存在称为投资比率的新参数,并且可以通过将投资比率设置为最佳价值来最大化,从而最大程度地提高了利率的复合效果。先前的研究提出了一种在复合深度强化学习和复合深度强化学习中优化投资比率的方法。在这项研究中,使用复合兴趣的财务交易策略深入了解,以学习一种方法来优化投资比率,并以涉及行动的方式使用美元汇率的实际汇率。
摘要 - 物联网(IoT)设备和新兴应用程序的指数增长显着提高了对无处不在的连通性和有效计算范式的要求。传统的地面边缘计算体系结构无法在全球范围内提供庞大的物联网连接。在本文中,我们提出了一个由高空平台(HAP)和无人机(无人机)组成的航空层级移动边缘计算系统。特别是,我们考虑了不可分割的任务,并制定了流动问题的任务,以最大程度地降低任务的长期处理成本,同时满足流量的过程和任务处理过程中的排队机制。我们提出了基于多代理的深钢筋学习(DRL)的流量算法计算,其中每个设备可以根据局部观察结果做出其流量决策。由于无人机的计算资源有限,无人机的高任务负载将增加放弃流量任务的比率。为了增加完成任务的成功率,使用卷积LSTM(Convlstm)网络来估计无人机的未来任务负载。此外,提出了优先的体验重播(PER)方法以提高收敛速度并提高训练稳定性。实验结果表明,所提出的流量算法的计算优于其他基准方法。