在潜在塑性铰区域内,钢筋必须屈服(压缩和拉伸)(可能出现应变硬化),这一事实使标准连接无效,在标准连接中,钢筋接头位于梁柱接头处。当地和国际结构规范都禁止在距离梁一个有效深度以内的距离内进行钢筋接头。考虑到这一点,接头位于梁的跨中,远离塑性铰区域,此处由横向力引起的弯矩较小。这种连接广泛应用于几个对地震要求较高的地区,如夏威夷和新西兰。9,10 Park、Restrepo 和 Buchanan 进行的测试充分证明了其抗震性能。11 他们发现了以下内容:
摘要。月球着陆器问题在强化学习领域提出了巨大的挑战,因此需要创建能够在月球表面安全着陆的自主航天器。在这项研究中,研究并检查了三种突出的增强学习算法,即深Q-Network(DQN),Double Deep Q-Network(DDQN)和策略梯度,并进行了检查并检查以解决此问题。最初,将神经网络和Q学习的DQN算法利用以学习最佳着陆政策。通过通过神经网络培训近似Q值,该航天器学会了做出明智的决定,从而成功着陆。随后,使用减轻高估偏差的DDQN算法。利用两个神经网络(一个用于行动选择,另一个用于评估),DDQN可提高稳定性和收敛性,从而产生精致的着陆策略。此外,这项工作探讨了策略梯度方法在此问题中的应用。通过使用梯度上升直接优化策略,该航天器可以最大化累积奖励,从而实现有效而准确的降落。通过广泛的模拟来评估该算法的性能,该模拟涵盖了不同的月球表面条件。结果证明了这些方法的有效性,展示了它们促进成功和燃油效率的航天器登陆的能力。总而言之,这项研究有助于了解Lunar Lander问题的DQN,DDQN和政策梯度算法。这些发现突出了每种算法的独特优势及其在自主航天器上的潜力。这项研究所获得的见解对未来的月球任务中智能着陆系统的发展具有影响,从而推进了航空航天应用中强化学习领域。
3.2 材料:所有材料必须符合 ICON Technology, Inc. 质量文件中概述的已批准规格。3.2.1 3D 打印机:专有 Vulcan 打印机型号 2.5 系列由 ICON Technology, Inc. 提供。3.2.2 3D 混凝土和灌浆芯:用于打印珠和芯填充的 3D 混凝土混合物必须是专有 ICON Lavacrete 4.0 GCC、Lavacrete 4.0 DOLO 或 Lavacrete 5.0 材料,由 ICON Technology, Inc. 提供,在工地放置后,28 天平均抗压强度为 2,500 psi (17.2 MPa) 或更高。根据 ASTM C143,平均坍落度必须为 3 至 9 英寸(76.2 至 229 毫米)。 3.2.3 钢筋:钢筋为符合 ASTM A615 标准的 5 号竖钢筋和 3 号横钢筋,最小屈服强度为 60,000 psi (414 MPa)。钢制横梁直径必须为 3/16 英寸 (4.8 毫米),符合 ASTM A580 304 级不锈钢标准,两端至少有 4 英寸 (101.6 毫米) 的钩子,与珠子对齐。4.0 设计和安装
建筑环境是温室气体排放的主要来源,消耗了大量的可用能源和自然资源。1-3 联合国估计,全世界建筑物的能源消耗占全球能源总消耗量的 30-40%,相当于每年 25 亿吨石油当量 (Mtoe);尽管可持续建筑实践有所改善,但随着城市化进程的加快,预计建筑能耗将急剧上升。建筑物的建造和运营消耗了全球总水资源的 16%、总采伐木材(原木)供应量的 25% 和总骨料供应量(原石、沙子和砾石供应量)的 40%,从而大大消耗了自然资源的生态系统。4,5 近期,许多努力都集中在减少建筑环境在建造、运营和报废处置或再利用/回收过程中的碳足迹。可以说,与这一努力相关的一个内在困难是同时降低体现能源和运营能源的价值,这往往会产生相反的效果
摘要 - 填充学习(FL)可以通过共享车辆本地模型而不是本地数据的梯度来在一定程度上保护车辆在车辆边缘计算(VEC)中的隐私。车辆本地型号的梯度通常对于车辆人工智能(AI)应用通常很大,因此传输如此大的梯度会导致较大的环境潜伏期。梯度量化已被认为是一种有效的方法,可以通过压缩梯度和减少位的数量,即量化水平,从而减少FL的每轮潜伏期,从而降低VEC。选择量化水平和阈值的选择决定了量化误差,这进一步影响了模型的准确性和训练时间。为此,总训练时间和量化错误(QE)成为启用FL的VEC的两个关键指标。与启用FL的VEC共同优化总训练时间和量化宽松至关重要。但是,随时间变化的通道条件会引起更多挑战来解决此问题。在本文中,我们提出了一个分布式的深钢筋学习(DRL)基于量化水平分配方案,以优化长期奖励,从总培训时间和量化宽松的时间来优化。广泛的模拟确定了总训练时间和量化宽松之间的最佳加权因素,并证明了拟议方案的可行性和有效性。
传统上,混凝土中钢筋的腐蚀速率是使用极化方法(例如恒电位、恒电流或动电位技术)来确定的。这些技术相当慢,并且都需要与钢筋进行电连接,而这又需要损坏混凝土保护层。因此,尽管精度令人满意,但这些技术很少用于土木工程结构。最近开发的无连接电脉冲响应分析 (CEPRA) 方法消除了钢筋连接的需要,并允许在每次测量不到 10 秒的时间内确定腐蚀速率。这使用户能够以对混凝土元件的最小干扰进行腐蚀调查,并减少检查大型结构所需的时间。该方法基于沿所考虑的钢筋使用 Wenner 阵列探头(四点探头),并在从外部探头施加阶跃电压后监测两个内部探头之间的电位差。利用两个内部探头之间的电位差,可以使用本文档中概述的电路模型确定系统的特性,包括混凝土电阻率和极化电阻/腐蚀率。该技术已作为手持设备 (iCOR®) 商业化,并已在多个实验室和现场研究中使用,其中发现其准确性与其他成熟方法相似。
碳化,75 现场浇注,弹性膜,121 阴极保护混凝土桥梁构件,38 停车结构,29 耐化学性,107 氯化物污染,29,38,75 混凝土桥梁构件,阴极保护,38 取芯,75 开裂,75 性质,107 铺路砖,预制,83 钢筋,氯化物污染,29,38 建筑行业团队,角色,65 腐蚀,钢筋,38 裂缝桥接,弹性体,107,121 裂缝,83
碳化,75 现场浇注,弹性膜,121 阴极保护混凝土桥梁构件,38 停车结构,29 耐化学性,107 氯化物污染,29,38,75 混凝土桥梁构件,阴极保护,38 取芯,75 开裂,75 性质,107 铺路砖,预制,83 钢筋,氯化物污染,29,38 建筑行业团队,角色,65 腐蚀,钢筋,38 裂缝桥接,弹性体,107,121 裂缝,83