电容性微机械超声传感器(CMUT)技术在过去十年中一直在迅速发展。在制造和集成方面的进步,再加上改进的建模,使CMUT能够进入主流超声成像。与常规技术相比,CMUT超声传感器传达了许多优势,例如大带宽和效率[1],[2],易于制造大型阵列和较低的成本。CMUT是一种高电场设备,通过通过充电和分解等问题来控制高电场,可以具有具有优越的带宽和敏感性的超声传感器,可以与电子设备集成并使用传统的集成电路制造技术制造,并具有所有优势。可以使CMUT设备灵活地包裹在圆柱体甚至人体组织上,并且由于使用Su-8 [3],[4],[8]或Polyirimide [5],[8],所有这些都可能使所有这些可能。在本文中,我们介绍了两种具有基本重要性的电介质材料的电气表征,以制造具有提及的特征的设备:氧化硅(SIO 2)在电荷注入和击穿方面对高电场具有出色的响应,以及具有优化且具有优化结构和
这项研究探讨了将桉树素提取物(ELE)作为一种创新的伤口敷料策略,以解决抗生素耐药性的威胁及其相关并发症在伤口细菌感染中的并发症。该研究基于对药用植物固有的抗菌特性以及纳米材料的有利释放特性的识别,尤其是纳米材料的有利释放特性,尤其是电纺纳米纤维,这些纳米纤维紧密模仿细胞外基质。利用静电纺丝技术,用羟基甲藻素提取物制造纳米纤维垫,使用扫描电子显微镜(SEM),傅立叶 - 转换基础(FTIR)(FTIR)光泽性(FTIR)光泽性(x-ray diffraction(xrd)(xrd),使用扫描电子显微镜(SEM),其结构和形态属性进行了全面表征。该研究采用60只雄性Wistar大鼠,将其分为PVA/ELE,硝基呋喃酮,正常盐水和PVA伤口敷料的组。微生物和组织病理学分析是在感染后特定的间隔进行的。结果揭示了PVA/ELE的显着抗菌功效,与对照组相比,细菌计数的大幅度降低证明了这一点。此外,PVA/ELE组表现出优质的伤口尺寸减小,上皮化和胶原蛋白沉积,类似于硝基呋喃酮组观察到的影响。这些发现表明PVA/ELE具有明显的抗菌潜力,并促进了先进的伤口治疗过程。因此,这种富含Ele的电纺纳米纤维配方是传统伤口护理的一种有希望且可行的替代方案,在打击细菌感染和促进伤口愈合方面具有多方面的益处。
缺乏用于非水电的膜的膜,会限制有机氧化还原流细胞中的细胞容量和循环寿命。使用可溶性,稳定的材料,我们试图比较可使用市售的微孔分离器和离子选择性膜可以实现的最佳性能。我们使用具有证明稳定性的有机物种,以避免由于材料降解而导致的分频和/或细胞失衡而导致的反应能力褪色。我们发现了生命周期和库仑效率之间的权衡:非选择性的分离器的性能更稳定,但具有低库仑效率,而离子选择性膜的效率低,而离子选择性膜可实现高库仑的效率,但会随着时间的推移而经历能力损失。当骑自行车前混合电解质时,库仑效率仍然很高,但是由于细胞不平衡而导致的容量损失,可以通过电解质重新平衡来恢复。这项研究的结果强调了可以通过合适的膜可以实现的非水细胞性能增益的潜力。
高介电材料的研究最近引起了极大的关注,这是用于应用金属构造器金属(MIM)电容器的关键被动组件。在本文中,通过原子层沉积技术(ITO)氧化锡(ITO)预涂层的玻璃底物和氮化钛(TIN)涂层的SI覆盖的Si底物在本文中制备了50 nm厚的Al 2 O 3薄膜。光刻和金属提升技术用于处理MIM电容器。用探针站的半导体分析仪用于使用低中等频率范围进行电容 - 电压(C-V)表征。MIM电容器的电流 - 电压(I-V)特性在精确源/测量系统上测量。在电压范围从-5到5 V的玻璃上,Al 2 O 3膜在玻璃上的性能从10 kHz到5 MHz。Au/Al 2 O 3/ITO/玻璃MIM电容器在100 kHz时显示1.6 ff/µm 2的电容密度为1.6 ff/µm 2,在100 kHz时损耗〜0.005,在1 mv/cm(5 v)下,在100 kHz时损耗〜0.005,泄漏电流为1.79×10 -8 a/cm 2。Au/Al 2 O 3/TIN/SI MIM电容器在100 kHz时的电容密度为1.5 ff/µm 2,在100 kHz时损耗〜0.007,较低的泄漏电流为2.93×10 -10 -10 -10 -10 A/cm 2,在1 mv/cm(5 v)处于1 mv/cm(5 v)。获得的电源可能表明MIM电容器的有希望的应用。关键字
密度泛函理论计算用于预测 Cd 基混合有机-无机高 TC 铁电钙钛矿的电子结构,TMCM-CdCl 3 是其中一种代表。我们报告了这些非磁性化合物价带中的 Rashba-Dresselhaus 自旋分裂。有趣的是,我们在计算中发现分裂不一定对材料的极化敏感,而是对有机分子本身敏感,这为通过分子的选择实现其化学可调性开辟了道路。通过在 CdCl 3 链中替换 Cl,可以进一步实现自旋分裂的化学可调性,因为发现价带源自 Cl-Cl 周键合轨道。例如,在 TMCM-CdCl 3 中用 Br 替换 Cl 导致自旋分裂增加十倍。此外,这些材料中的自旋极化产生了与极化方向耦合的持久自旋纹理,因此可以通过电场进行控制。这对于自旋电子学应用来说很有前景。
图 3. (a) 黑暗环境下 cKPFM 测量中相位响应的加载图,其中 BE-PFM 测量中观察到铁电畴。(a) 中 (b) 红色、(c) 绿色、(d) 紫色和 (e) 浅蓝色标记的“×”处的单个 cKPFM 曲线。(f) 照明环境下 cKPFM 测量中相位响应的加载图。(g) 黄色、(h) 绿色、(i) 紫色和 (j) 浅蓝色标记的“×”处的单个 cKPFM 曲线。(k) 黑暗环境下和 (l) 照明环境下 cKPFM 数据平均偏差的第 1 个 PCA 分量。
由于某些化学成分表现出所谓的杂化铁电性不当,近年来,近年来,ruddlesden-popper氧化物中温度依赖性的相变的次要氧化氧化物氧化物中的温度依赖性相变。然而,目前几乎没有理解这些相变的静水压力依赖性。本文中,我们介绍了对双层ruddlesdledlesden-popper阶段Ca 3 Mn 2 O 7和Ca 3 Ti 2 O 7的高压粉末同步X射线衍射实验和Abinitio研究的结果。在两种化合物中,我们都观察到一阶相变,结合了我们的密度功能理论计算,我们可以将其结合分配为极地A 2 1 AM和非极性ACAA结构。有趣的是,我们表明,尽管压力的施加最终有利于非极相,正如适当的铁电体所观察到的那样,但存在压力实际上可以增加极性模式振幅的响应区域。可以通过考虑八面体倾斜和旋转对静水压力及其三线性耦合与极性不稳定的旋转的多样化响应可以无障碍。
我们通过在透射电子显微镜中使用选定的区域电子衍射(SAED)研究了各种独立的AFM膜(type-a,b,c)的结晶度,请参见补充图S1.1A,C,e。A型,B膜是在SAO涂层的α-AL 2 O 3和SRTIO 3底物上生长的未封闭的α-FE 2 O 3层,而C型C膜是缓冲α-FE 2 O 2 O 2 O 3层在SAO涂层的Srtio Srtio 3 sibtrates上生长的3层。缓冲液由老挝和STO层制成(有关详细信息,请参见方法)。SAED模式证实A型膜中的AFM层是多晶的,而B型膜中的AFM层是单个晶体。type-C的缓冲膜不仅是结晶的,而且由于与缓冲液中的老挝层的不匹配,还具有Moiré图案。此外,通过POL图分析和𝜙 -Scans证实了缓冲膜中各个层的外延生长,在补充图S1.2中进行了说明。最后,在补充图S1.1b,d,f中显示的光学显微镜图像表明,未固定的A型,B膜通常会构成更多的裂纹,从而导致较小的完整膜区域。相比之下,缓冲型C膜通常形成较大的面积样品,裂纹较少,这对于实现强弯曲的AFM结构以探索磁结构效应很重要。
高表面特性。tc ba-y-cu-o和通过薄绝缘子过层钝化。Takashi Hirao,Kentaro Setsune和Kiyotaka W asa。中央重新建筑实验室,Matsushita Electric Industrial Co.,Ltd.,3-15,Yagumonakamachi,Moriguchi,Osaka,Osaka 570
这项研究介绍了使用乙烯基氟化物(PVDF)和基于聚合物的聚合物(PES,硫酸PE,硫酸PE,硫酸PES,PE,pes,pes,pes,pes)聚合物的双层型纳米纤维膜(DL-ENMS(DL-ENMS)(PES)。用单层电纺纳米纤维膜(SL-ENM)进行了比较分析,总厚度约为375μm。使用饲料溶液,包括氯化钠,硝酸钠和模拟的核废水(SNWW),评估了通过直接接触膜蒸馏(DCMD)和空气间隙膜蒸馏器(AGMD)技术进行脱盐和放射性核素去污染的DL-ENMS的性能。结果表明,DL-ENM,尤其是掺入基于PES的基于PES的亲水性层的DL-Enms表现出较高的渗透通量,在DCMD中使用NACL和NANO 3的水溶液在DCMD中达到72.72 kg/m 2。h和73.27 kg/m 2。 2。H分别在DCMD和AGMD中使用SNWW的水性进料溶液。SL-Enms和DL-Enms均表现出较高的排斥效率和饲料溶液的净化因子(> 99.9%)。此外,准备好的ENM暴露于伽马辐射中,以评估其在现实生活中的适用性。辐射的结果表明,伽马辐射对PVDF氟含量的负面影响,这可能是将PVDF用作疏水材料通过膜蒸馏将核废水衰减的关键点。