本文介绍了对硫化物矿石的铜生物侵蚀的早期发展的简要回顾,并讨论了其从巴基斯坦从土著硫化物矿石沉积中提取铜的预期。铜的形式存在于辣椒(Cufes 2),辣椒(Cu 2 s),Covellite(Cus),Bornite(Cu 3 Fes 3),Enargite(Cu 3 Fes 3),Cu 3 Ass 4)和Tennantite(Cu 3 Ass 3),是最重要的重要铜(Cu 3 Ass 3),这是最重要的铜在硫化铜和甲型型号(柱状型)中,孢子型(Strate-Strate-contrancient and Strate-coundert)(硫化物沉积。黄铁矿(FES 2)和其他金属(Ni,Co,Mo,Zn等)硫化物矿物质也存在于硫化矿石沉积物中。在浸出溶液中硫酸盐(FES 2)(FES 2)的细菌氧化和Cu-硫化物矿物质(S)中,在浸出溶液中在浸出溶液中产生硫酸(H 2 SO 4),硫酸铁(Fe 2(So 4)3)和硫酸盐Cuso 4的硫酸和硫酸盐CUSO 4和氧硫化物矿物质(S)由酸性fe-氧化和氧化氧化剂进行了改良,从而产生。硫酸(H 2 SO 4)充当利克西(浸出剂)和硫酸铁(Fe 2(So 4)3)作为墨西哥铜矿的生物素质过程中的氧化剂(CUFES 2)。由于低pH值促进矿物质的质子攻击,并减轻了浸出溶液中金属的沉淀,因此生物无能的反应在pH 1.5-3.0处是最佳的。可溶性铜通过从酸性铜浸出液中的溶剂提取(SX)回收,在下游加工过程中进行了剥离/洗脱,然后进行电工(EW),以生产生物含量的铜铜(99.9%CU)产品。铜是从硫矿石和采矿废物中提取的,并使用堆和倾倒生物渗入过程在商业规模上提取。通过将残留物变成价值,这是一个独特的机会,可以在商业规模上引入创新的环境友好型铜提取技术,从而被认为是高度盈利的。可以将生物渗入过程用于提取Cu和相关的有价值的金属,从土著低级,截止等级,泡沫尾矿和硫化物矿床的采矿废物
Liu 等 [36] 在 1950 ℃ 和 50 MPa 压力的 SPS 过 程中,发现随着 TiB 2 的添加量由 5 mol% 增至 30 mol% ,复合陶瓷的硬度降低,断裂韧性增加。 除裂纹偏转和 TiB 2 的钉扎效应使 B 4 C 晶粒细化 ( 从 1.91 μm 减至 1.67 μm) 外,两相间位错的产生, 是 B 4 C 陶瓷增强、增韧的次要原因,其在陶瓷断 裂前吸收能量,造成局部强化 [37–38] 。研究发现, 添加 20 mol% TiB 2 时,复合陶瓷的相对密度为 97.91% ,维氏硬度为 (29.82±0.14) GPa ,断裂韧性 为 (3.70±0.08) MPa·m 1/2 。 3.1.2 Ti 单质引入 与直接添加 TiB 2 相比,在烧结过程中原位反 应生成 TiB 2 可以在较低的烧结温度下获得更高 的密度和更好的机械性能。 Gorle 等 [39] 将 Ti-B( 原 子比 1:2) 混合粉体以 5 wt.% 、 10 wt.% 和 20 wt.% 的比例加入到 B 4 C 粉末中,研磨 4 h 后通过 SPS 在 1400 ℃ 下获得致密的 B 4 C 复合陶瓷。由于 WC 污染,获得了由被 (Ti 0.9 W 0.1 )B 2 和 W 2 B 5 的细颗粒 包裹的 B 4 C 颗粒组成的无孔微结构。当 Ti-B 混合 物的量从 5 wt.% 增至 20 wt.% 时,烧结活化能从 234 kJ·mol −1 降至 155 kJ·mol −1 。含 5 wt.% Ti-B 混 合物的 B 4 C 复合材料的最大硬度为 (3225±218) HV 。由于 TiB 2 的原位形成反应是高 度放热并释放大量能量的自蔓延反应,因此,原 料颗粒界面间的实际温度预计高于 SPS 烧结温 度,同时,液相 W 2 B 5 的形成润湿了 B 4 C 表面, 有助于降低 B 4 C 晶粒的界面能,并加速了沿晶界
30 多年来,Interpoint 一直提供高可靠性、高密度的金属封装微电子产品。封装由镀金 Kovar(一种铁镍钴合金)和各种配置的玻璃或陶瓷密封连接针组成(见图 1)。其他金属封装选项包括钛、钼、冷轧钢和金属基复合材料(如铝硅碳和铜钨)。混合组件是密封的,可以按照 MIL-PRF-38534 进行筛选。这些混合物可以在极端温度和高压下工作。它们可以承受高压釜、腐蚀性环境和其他恶劣条件。
首字母缩略词: ACGIH:美国政府工业卫生学家会议 C:摄氏度,F:华氏度 CAA:清洁空气法案 CAS:化学文摘社 CSA:加拿大标准协会 CEPA:加拿大环境保护法案 CERCLA:综合环境反应、赔偿和责任法案 DOT:运输部 EHS:极其危险物质 EPCRA:紧急计划和社区知情权法案 IARC:国际癌症研究机构 IMO:国际海事组织 LD50:50% 致死剂量 LC50:50% 致死浓度 NIOSH:国家职业安全与健康研究所 NTP:国家职业安全与健康研究所 MSHA:矿山安全与健康管理局 OSHA:职业安全与健康管理局 RCRA:资源保护与回收法案 RTK:知情权 RQ:可报告数量 SARA:资源保护与回收法案 TSCA:有毒物质控制法案 TPQ:阈值规划数量 WHMIS:工作场所危险材料信息系统 wt.:重量
Technology, 2021, 201: 108541.[19] Steinke K, Groo L, Sodano H A. Laser induced graphene for in situ ballistic impact damage and delamination detection in aramid fiber reinforced composites [J].Composites Science and Technology, 2021, 202: 108551.[20] 杜晓云 , 李金宝 , 杨斌 , 等 .芳纶树脂液浸渍协同冷压 光制备高强度间位芳纶纸的研究 [J].中国造纸 , 2024, 43(4): 120 - 129.Du X Y, Li J B, Yang B, et al.Study on preparing high strength meta - aramid paper by aramid resin solution impregnation combined with cold pressing[J].China Pulp & Paper, 2024, 43(4): 120 - 129.[21] 关振虹 , 李丹 , 宋金苓 , 等 .易染间位芳纶的制备及其 性能 [J].纺织学报 , 2023, 44(6): 28 - 32.Guan Z H, Li D, Song J L, et al.Preparation and properties of dyeable meta - aramid fiber[J].Journal of Textile Research, 2023, 44(6): 28 - 32.[22] 朱文豪 , 宋欢 , 丁娉 , 等 .沉析纤维长度对间位芳纶纸 性能的影响 [J].中国造纸 , 2024, 43(1): 109 - 115.
摘要:随着全球变暖和温室效应的加剧,全球对制冷的需求日益增加。但是,传统的制冷方法不仅消耗了很多能量,而且还会产生诸如Co 2和臭氧(O 3)之类的温室气体(O 3),这将导致温室效应的强化,从而导致恶性循环。迫切需要开发一种干净的冷却技术。被动的白天辐射冷却已被证明是一种有效的策略,是以辐射形式转移到冷外层空间的形式的有效策略,并实现冷却的目的而无需消耗能量或使用辅助设备。根据被动日间辐射冷却技术的原理,本文分析了白天辐射冷却膜和涂料的设计思想,并分析和阐述了辐射冷却材料的开发历史和最新研究进度。最后,结合当前在构建冷却和个人热管理方面的应用,该技术的未来开发方向已被验证。关键字:全球变暖;温室效应;白天辐射冷却;发展课程;建筑冷却;个人热管理
6 天前 — jp/msdf/bukei/index.html。第 2 页。货号。规格(详情)。货号。货号。滚装船。编号。货号。名称。时间表。单位。数量。标准(根据函馆基本大米和食品标准并如下所示)。
09:00-09:50 Tadaki(国家传染病研究所)感染性病理学对Covid-19的贡献10:00-10:00-10:50 Yamazaki Akira(大阪大学)(大阪大学)细胞介导的免疫反应对SARS-COV2 11:00-11:00-11:00-11:00-11:50 ARASE NAO(OSAKA NAO)介绍了OSAKA NAO(OSAKA NAO),以下简13:00-13:50 Nishiura Hiroshi(京都大学)Covid -19的传染病流行病学194:00-14:50 Sato Yoshi(Tokyo)新颖的Coronavirus大学的演变15:00-15:00-15:50-15:50
gators 仅包括单一温度数据(例如室温),而不包括时间相关曲线(例如应力-应变、疲劳或蠕变),则不包括数据。此类调查通常记录趋势