Murat Tiryakioǧlu 博士,CQE,顾问 Alexandra Schönning 博士,委员会成员 Paul Eason 博士,PE,委员会成员 被工程学院录取:工程学院主任 Murat Tiryakioǧlu 博士,CQE 被计算机、工程和建筑学院录取 Mark A. Tumeo 博士,PE 计算机、工程和建筑学院院长 被大学录取:John Kantner 博士 研究生院院长
最近启动的 WTEC 社区发起的最新技术评估 (CISAR) 计划目前正在实现后两个目标。CISAR 为美国研发界提供了一个机会,可以建议和开展研究,而这些研究可能无法仅由政府发起资助。例如,WTEC 与大学/行业团队建立了合作伙伴关系,部分资金来自行业,开展三项 CISAR 研究,分别涵盖韩国半导体行业、环太平洋国家电子最终组装技术以及环太平洋国家民用基础设施技术。其他几个主题正在考虑中。有关 CISAR 计划的更多信息可在 WTEC WWW 服务器 (http://itri.loyola.edu/cisar.htm) 上找到,或联系 WTEC 办公室。
美国财政部在 1 月底宣布,将解除 2018 年 4 月针对 En+、Rusal 和 JSC EuroSibEnergo 实施的制裁,这些公司目前均由奥列格·德里帕斯卡控制。美国政府做出这一重大决定的原因包括,除了对德里帕斯卡控制这些公司的批评之外,这一决定给全球铝市场带来了数月的不确定性和失望,其中一个突出原因是:美国总统希望通过一举重振国内铝行业,由于大量结构性原因,该行业处境艰难。我们从不掩饰对这场贸易冲突技术方面的批评,它几乎损害了所有人,首先是美国轻金属行业的绝大多数公司:只有一些美国原料金属生产商从关税和制裁战中获得了一定的好处,其余所有行业都为政府的选择付出了沉重的代价。无论如何,正如预期的那样,在德里帕斯卡退让几步之后(En+ 和 Rusal 这两家公司接受了来自美国和欧盟的独立人士进入其董事会等),最终决定逐步取消该条款,但由于美国民主党议员反对取消制裁,这并非没有内部政治困难。从我们的角度来看,铝行业的状况是
免责声明 本报告是作为美国政府机构赞助的工作的说明而编写的。美国政府及其任何机构或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文作者表达的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
•https://dfs.gov.in/sitault/files/01-10/prospl.apl.13&moden = 3&lap=3&lap=3&lap=3&lap=3&lap=3&lap=3&lap=3&lag=gi https://ppib.gov.in/pressingaspage.aspx?prid=2096/pmksp.100.19,100.14/rpports/rpports/aquapkark http://164.100.192.144/reports/reports/reports/reatefific ports/artific stortalport• https://pib.gov.in/nnewsite/printease.spx?ravt=13884/plv.3/viecen.ap:apid https://dof.gov.gov.in/marine-fisies•https•https
从历史上看,铸造工艺使最终铸造部件的材料特性发生了显著的变化,这意味着必须在铸造部件的设计中添加“铸造因素”来解决这个问题。通常,这意味着铸造部件可能比通过其他工艺制造的部件重 1.4 到 1.7 倍,并且将其在航空航天领域的应用范围限制在不太重要的应用中。工艺模拟和改进工艺控制的技术已导致其他金属铸造的逐步改进,例如单晶镍涡轮叶片。这些方法需要应用于铝铸造,以减少铸造因素,并使铸造部件具有更广泛的适用性,以充分实现铸铝在航空航天领域的优势。
解决方案:该项目的目标是生产出机械性能提高 20-30% 的铸件。目前正在探索多种解决方案,以使将纳米颗粒掺入铝中具有成本效益。最近的工作重点是使用与碳混合的反应性熔剂来生产纳米碳化钛。这是通过将含钛熔剂与活性炭混合并将材料添加到熔体表面来实现的。熔剂的作用是在加工过程中保护熔体。在这项研究中,形成了大量颗粒,并且颗粒的尺寸与碳前体没有紧密联系,这表明可以使用成本较低的碳。由于其他合金可能会干扰反应,因此将使用此程序生产母合金,然后可以将其添加到标准铸造合金中以提高其强度。
摘要 传统的航空航天设计方法提供了快速有效的方法来生成新设计,但这些新设计通常与以前的设计相似。然而,对于真正创新的设计,需要一种不同的方法。本文建议,一种称为“参数分析”(PA)的通用概念设计方法可用于教授和实践创新航空航天设计。为了支持这一主张,我们调查了四个不同、创新和独特的案例研究,它们均由经验丰富的航空航天设计师进行:第二次世界大战的“炸坝”弹跳炸弹、20 世纪 70 年代的 Gossamer Condor 人力飞机、20 世纪 90 年代的非对称 Boomerang 双引擎飞机和 21 世纪初的 SpaceShipOne 亚轨道航天器。本文详细阐述了如何调整和应用案例研究方法以提供支持研究假设的证据,并展示了案例研究的分析结果。这表明,专业的航空航天设计师遵循了与 PA 类似的思维过程,即使是在不知不觉中,其中相似性是通过计算案例研究中可以证明存在的 PA 特征的数量来衡量的。还讨论了研究方法的优点和局限性。
刺激靶向神经组织。 [1]它提供了强大的工具,既可以理解脑功能,又可以调节神经回路的活性以改善疾病的预防。 [2]在神经科学研究中使用神经调节已使神经回路中功能连通性的大量发现。 [3–8]此外,能够改善,恢复和替代运动,感觉和认知功能的神经化策略导致了治疗神经精神疾病的典型途径和假肢。 在具有高时空分辨率的深脑区域中对特定细胞类型和神经回路的微创神经调节是神经调节的最终目标[2],尽管目前的神经调节技术尚未实现。 Here, we focus on how emerging nanotechnology is galva- nizing novel neuromodulation strategies, with an emphasis on recent research progress on nanotechnology-enabled neuro- modulation modalities with less invasive surgical procedures, improved bio-implant interfaces, deeper brain accessibility, and higher spatiotemporal resolution. 我们讨论了纳米技术如何实现特定的神经调节方式,例如电气,光学,化学,声学和磁性,以及使用纳米材料作为能量传感器的跨模式神经调节策略的移植形式。 最后,我们在推进基础研究和临床翻译的神经调节策略方面提供了对未来努力的看法。刺激靶向神经组织。[1]它提供了强大的工具,既可以理解脑功能,又可以调节神经回路的活性以改善疾病的预防。[2]在神经科学研究中使用神经调节已使神经回路中功能连通性的大量发现。[3–8]此外,能够改善,恢复和替代运动,感觉和认知功能的神经化策略导致了治疗神经精神疾病的典型途径和假肢。在具有高时空分辨率的深脑区域中对特定细胞类型和神经回路的微创神经调节是神经调节的最终目标[2],尽管目前的神经调节技术尚未实现。Here, we focus on how emerging nanotechnology is galva- nizing novel neuromodulation strategies, with an emphasis on recent research progress on nanotechnology-enabled neuro- modulation modalities with less invasive surgical procedures, improved bio-implant interfaces, deeper brain accessibility, and higher spatiotemporal resolution.我们讨论了纳米技术如何实现特定的神经调节方式,例如电气,光学,化学,声学和磁性,以及使用纳米材料作为能量传感器的跨模式神经调节策略的移植形式。最后,我们在推进基础研究和临床翻译的神经调节策略方面提供了对未来努力的看法。