本文档是信用计划和战略性蓝图的工具,与国家和全球发展目标(包括可持续发展目标(SDG))保持一致。它重点介绍可持续和气候的农业实践,技术进步,营养安全和包容性的社会经济发展。它认识到现代技术在农业中的现代技术越来越重要,例如无人机,人工智能(AI)和物联网(IoT),强调了这些技术是需要信用支持的新兴领域。PLP通过与利益相关者进行了广泛的咨询,反映了Nabards地区发展经理(DDMS)的集体智慧和经验。它确定了关键的基础设施差距,并为旨在整体农村发展的信用和非学分干预措施提供了可行的见解。今年,Nabard利用技术为有效的信用预测准备数字PLP。该新一代文档具有标准化的结构,覆盖范围和数据指数。它几乎已经消除了手动干预措施,这是数据驱动环境的基础。我们认为,这种数字PLP将是赋予印度农村地区权力并满足农村生态系统中所有利益相关者的需求的催化剂。
doi:10.6026/9732063002001683生物信息2022影响因子(2023版本)为1.9。出版伦理宣言:作者的国家,即他们遵守有关在https://publachication.org/其他地方所描述的有关出版道德准则的指南。作者还承认,他们与与本出版物相关的任何形式的不道德问题联系在一起的任何其他第三方(政府或非政府机构)无关。作者还宣布,他们没有拒绝任何误导出版商的信息。官方电子邮件上的声明:相应的作者宣布,所有作者许可证声明都不可用于其机构中的终身官方电子邮件:这是一份开放访问文章,允许在任何媒介中不受限制地使用,分发和复制,前提是原始工作得到了适当的信誉。这是根据读者的Creative Commons归因许可评论的条款分发的:在生物信息中发表的文章是针对相关发布的出版物评论和批评开放的,该评论和批评将立即发布到原始文章,而无需开放访问费用。评论应简洁,连贯和至关重要,少于1000个字。免责声明:表达的观点和观点是作者的观点,不反映生物信息的观点或观点和(或)其出版商生物医学信息学。生物医学信息学仍然保持中立,并允许作者指定其地址和隶属详细信息,包括在需要的情况下。生物信息为数据和信息提供了一个平台,以在生物/生物医学领域中创建知识。
据报道,使用无膜多光谱图创建热响应生物功能的水凝胶微结构。与常规多光子触发的基于聚合的技术背道而驰,这种方法依赖于同一合成的聚合物链的同时光叠链链接和附着在固体底物上。该方法允许改善对聚合物网络特征的控制,并通过在特定位点与生物分子进行模型后的额外功能来使其他功能易于整合。探索两个不同的基于苯喹酮和蒽醌的光叠链链链链球链球链球链球链球链球链球链球链球链球链球链将使用的PhotoCrosslink效率均通过使用的近传近光线符号的近光线仪使用。通过表面等离子体共振成像,原子力显微镜和光学荧光显微镜的全面表征揭示了肿胀的行为,并证明了延期后的可行性。值得注意的是,在特定的多光子光链接参数范围内,表面附加的微观结构显示出类似于皱纹形成形成的准膜状地形。利用已建立的多光石版画系统的功能,以高分辨率为快速的模式写作,这种方法对多功能3D微型和纳米结构的多功能制造具有很大的希望。在生物分析和生物医学技术的领域中,这种量身定制的响应式生物功能材料具有对组成,肿胀行为和延展后的空间控制,尤其有吸引力。
在过去的几年中,量子物理原理在计算机网络中的应用正在在研究和行业社区之间获得动力,如第一次标准化的尝试,即互联网工程工作组(IETF)的第一次标准化[1] [1],[2]。在这些原则中,量子纠缠已被确定为量子通信的基本资源[1],因为它可以使量子Internet应用程序作为安全的加密密钥分布和分布式量子计算[2]。但是,量子纠缠是一个概率的过程,这很大程度上取决于相关通信设备的特征。因此,纠缠管理构成一个随机控制问题,可以作为马尔可夫决策过程(MDP)[3]提出。在这项初步工作中,我们研究了深钢筋学习(DRL)解决这些问题的能力,尤其是当两个远程通信节点之间建立量子纠缠时,链接不直接连接。在下面的段落中,我们将介绍所需的背景。Qubit和纠缠。在量子通信和量子计算中,经典位的对应物是量子位(或Qubit)。但是,尽管经典位可以采用“ 0”状态或“ 1”状态,但量子可以在两者的叠加中处于叠加,并且有一定的可能性在其中一个状态。量子位于此叠加中,直到其最终测量为止。之后,它将根据相应的概率为“ 0”值或“ 1”值。量子网络。1)。当两个量子位被纠缠时,无法以分离的方式描述其各个状态:一个状态变化,即量子读数测量,其中一个是隐含的变化,无论它们之间的物理距离如何。因此,两个纠缠量子位的测量值表现出用于设计不可能通过经典通信(例如US量子密钥分布或分布式量子计算)设计新应用的非经典相关性。一组能够在RFC中定义为量子网络的节点可以交换Qubits和分布纠缠状态[1]。这些量子节点通过光纤或卫星激光链路相互连接。在本文中,我们假设链接。何时,在两个由直接链接连接的位于两个相邻量子节点的量子位置之间建立纠缠(例如,在图。1),纠缠构成基本量子链接[1]。其成功概率指数随着距离而呈指数减小,这意味着短途纠缠(如图a -b,图。1)比长距离纠缠更可能成功(如图要克服这个问题,我们可以通过所谓的纠缠交换[1],[4]在两个基本链接上创建虚拟链接[1]。此过程允许通过在两个端点之间的路径上消耗先前生成的基本链接来创建长距离纠缠的对。图1,消耗基本链接A -B和B -C以创建更长的虚拟链接A -c。量子节点(如图1)通过纠缠交换创建长距离纠缠的对纠缠的对被称为量子中继器[1],它们必须将中间基本链接存储在所谓的量子记忆[1]上,以稍后消耗。量子内存寿命。在特定时间之后,以其原始状态(例如,纠缠状态)在量子存储器中存储的量子的概率仍会随时间减少[5]。这种概率被称为记忆效率ηm[5],其衰减称为腐蚀性。此过程是量子内存与环境的渐进相互作用的结果,因为存储器不能完全
对于工业并行机器人的加工过程,移动平台和链接产生的重力将导致工具头预期的加工轨迹的偏差。为了评估此偏差并绕过它,有必要执行机器人刚度模型。但是,在先前的刚度分析中很少考虑重力的影响。考虑到链接/关节合规性,移动平台/链路重力以及每个链接的质量中心位置,本文为工业并行机器人提供了一种有效的刚度建模方法。首先,与每个组件相对应的外部重力由重力和质量中心位置的影响下的静态模型确定。然后,通过运动学模型获得了每个组件的相应Jacobian矩阵。随后,通过悬臂梁理论和基于FEA的虚拟实验获得了每个组件的遵从性。依次确定整个平行机器人的刚度模型,并在几个位置计算平行机器人的笛卡尔刚度矩阵。此外,可以预测工具头在每个方向上的主要刚度分布。最后,通过比较计算出的刚度和在相同条件下测量的刚度的比较来证明具有重力的刚度模型的有效性。
2022年9月,社区生活管理局(ACL)为具有I/DD和心理健康支持需求的个人(现称为Link Center)提供了技术援助和资源中心。领导这项工作的核心伙伴关系是国家发展障碍服务协会(NASDDDS),全国国家心理健康计划董事协会(NASMHPD)和NADD,该协会的国家组织专注于具有智力障碍和心理健康需求的个人。共同提议通过建立旨在建立强大的协作服务系统的国家政策学院来增强链接中心的工作,使各州能够有效地支持危机中的个人,无论残疾和/或沟通差异如何。政策学院的工作将与Link Center的工作进行密切校准,并使这一巨大努力的杠杆作用。
本文介绍了挪威研究委员会支持的研究项目内部的一些结果。本文重点介绍了与供应链(SC)域和运输域中控制系统集成有关的结果。通过控制系统在SC域中的控制是指支持SC中决策和通过控制域中的控制系统的任何系统,是指支持运输网络监视和管理的任何系统,例如道路网络。本文从互操作性的角度查看集成,并描述了三种类型的互操作性,合同,功能和技术互操作性,提供了完整的互操作性。本文采用了Arktrans中定义的角色模型和功能 - 多模式的框架体系结构作为起点,并将其与供应链操作参考(SCOR)模型相结合。本文描述了这两个域的共同榜样,这是两个域的共同核心函数以及一个共同的信息体系结构。本文还将智能商品引入了两个领域之间的关键联系,并在对SC领域的决策以及运输域中运输的监控和管理中发挥了重要作用。最后描述了技术互操作性。本文的主要目的是提出一种前进的方式,以将SC和运输领域链接和整合,以使利益相关者在两个领域的利益方面受益于更有效,安全和可靠的货物运输。
增强其用于PEM电解剂的催化剂:研究硼龙和磷对酸性培养基中活性碳支持的基于芳族的催化剂的影响
https://www.mynavyhr.navy.mil/Support-Services/Culture-Resilience/Drug-Alcohol-Deterrence/Policies-OpGuides/