c) 对于按本规范 2.3.2 规定判断可以使用的部件,或按 2.3.3 中 a)、b) 规定修理好的部件,应进行组装、调整。
1. 简介 氨因其高能量密度和碳中性而被视为未来有前途的绿色能源。然而,最大的挑战仍然是从丰富但间歇性的可再生能源中更有效地生产氨。1 在传统的氨合成中,氨通过冷凝器分离,这是能源密集型的。7 因此,改善氨合成的一个重要方面是在循环之前用固体吸收剂有效地分离氨。最近,已经提出了几种材料作为氨分离的固体介质,其中金属卤化物似乎是最可行的选择,通过协同吸收氨。12 在本文中,研究了块状氯化镁以及负载在多孔载体上的氯化镁的氨容量。
受到全球脱碳趋势的驱动,氨燃料的使用,包括氨的发展热发电和氨水燃料的海洋发动机的发展正在迅速增加。然而,氨是有毒的,令人讨厌的(进攻气味)和腐蚀性,因此在处理氨燃料时确保安全很重要。迄今为止,三菱重工有限公司(MHI)和三菱造船有限公司(MSB)已开发了用于海洋氨燃料处理的全面系统,包括氨燃料燃料供应和减少氨。氨水含量减少系统可去除在双燃料发动机中将氨燃料切换为油时,在管道清除过程中产生的有毒残留氨。该系统可以快速消除大量的氨净化气体,其浓度会发生变化,尤其是在紧急情况下(例如停电)。本报告描述了我们独特的系统,用于快速减排方法,用于从管道中获得大量和高压氨水清除气体。
关键见解 2:IRA 政策是集成 H2 的改变者。• 比 FE-CCUS、先进核能和筒仓系统更具成本效益。• 集成 H2 将完全符合清洁 H2 3 美元/千克信用额度,风能/太阳能可以直接利用完整的 PTC 和 ITC 信用额度。• 集成 H2 极有可能完全满足所有附加性和每小时时间匹配要求。
在全球层面,为了缓解气候变化,需要实现几个目标,即与能源效率、可再生能源和温室气体 (GHG) 排放有关的目标。2018 年,国际海事组织通过了一项全球战略,到 2050 年将国际航运的温室气体排放量减少至少 50%(与 2008 年相比)(MEPC,2018 年)。通过这种方式,混合动力推进系统提供了结合各种燃料、能源管理系统和电池的可能性,为主要发动机提供峰值功率,以减少温室气体排放并提高效率。从处理、加油和船上更安全的储存的角度来看,使用氨作为燃料的选择很有吸引力,可以避免安全隐患。此外,通过船上中间过程,例如通过净化海水进行电解或可再生能源生产,可以考虑现场生产燃料,否则这些燃料必须来自岸上供应。
2019 年,由于大量且无限制地使用化石燃料来满足社会约 80% 的能源需求(目前约为 585 艾焦耳 (EJ)/年),全球二氧化碳 (CO 2 ) 的年度排放量达到 34.2 千兆吨 (Gt)。1、2 为客运和货运提供出行服务的交通运输约占二氧化碳总排放量的 25%。3、4 考虑到目前的人口增长率和相关的能源消耗增长,预计到 2050 年,全球能源需求将增加至少 50%。1、2、5 为了满足这些需求,同时通过减少人为二氧化碳排放将环境影响降至最低,大规模部署低碳可再生能源 (RE) 是必要的。 6 − 8 尽管可再生能源在当前能源格局中的总体份额略有增加,但最近的研究确实表明,在未来 30 年左右,通过具有成本效益的全球热力和运输部门深度电气化的愿景,可以实现向 100% 可再生能源的全面过渡。 9 − 11 因此,这种能源转型不再是技术可行性或经济可行性的问题,而是政治意愿的问题。 12
溃疡性结肠炎 (UC) 和克罗恩病 (CD) 是影响胃肠道的慢性炎症性疾病,通常需要终生治疗。从历史上看,这些诊断的预后不佳,但人们对疾病过程的理解以及治疗方法都有了显着的改善。虽然仍然没有治愈性疗法,但药物治疗的主要内容是使用免疫抑制和免疫调节来诱导缓解和改善生活质量。1990 年代后期抗肿瘤坏死因子 (TNF) 疗法的引入彻底改变了药物治疗领域。在英夫利昔单抗首次获批后,多种静脉和皮下生物制剂加入了医疗设备库。 1-3 2021 年 5 月,奥扎尼莫德 (Zeposia,百时美施贵宝) 成为美国食品药品监督管理局 (FDA) 批准的首个用于治疗中度至重度活动性 UC 的鞘氨醇-1 磷酸 (S1P) 受体调节剂。4 本文讨论了 S1P 受体调节疗法的作用机制、疗效和安全性,并考虑了它们在治疗 UC 患者中的适当定位。
摘要CCAT PRIME项目的Fred Young Simbillimimeter望远镜上的主要CAM接收器旨在通过敏感的宽带,极性计和光谱测量来解决重要的天体物理和宇宙学问题。开发中的主要频率频段包括对极化敏感的宽带通道的280、350和850 GHz,对于光谱仪来说包括210-420 GHz。微波动力学电感检测器(MKID)是探测器技术的自然选择,在这些高频下,大格式阵列所需的多种式读数的简单性。我们在这里提出了FeedHorn耦合280 GHz极化MKID阵列的初始实验室表征,并概述了后续MKID阵列的计划以及测试台的开发以表征它们。
以 2008 年的水平为基准。为了实现这些具有挑战性的目标,海运业必须引入 SO X 、NO X 和 CO 2 排放量可忽略不计或较低的环保燃料。氨在海运应用中的应用前景广阔,因为它具有高能量密度、低可燃性、易于储存和低生产成本的特点。此外,氨可用作燃料电池等各种推进器的燃料,并可由可再生能源生产。因此,氨可用作多功能船用燃料,利用现有基础设施,并且 SO X 和 CO 2 排放量为零。然而,要使氨成为实现航运脱碳的有力燃料,还需要克服几个挑战。这些因素包括选择合适的氨燃料发电机、选择合适的系统安全评估工具以及缓解氨危害的措施。本文讨论了用于船舶应用的氨燃料燃料电池的最新进展,并介绍了它们的潜力和挑战。
绿色氨就是这样一种化学衍生物,其液态能量密度为 3.5 kW h L 1.7 生产氨只需要水、空气和电力,而且燃烧时不会释放碳排放。图 1 显示了绿色氨的生产示意图。与液态氢(253 C(参考文献 7))相比,它可以在相对温和的条件下储存(大气压 33 C 或室温 10 bar(参考文献 5))。全球氨运输系统已经很完善和易于理解。目前,氨主要用作肥料,但是,如果作为能源载体,它可以直接使用,也可以裂解回氢气。尽管具有这些良好的特性,但在大多数情况下,绿色氨产生的能量超过液体化石燃料的成本,这种高成本是广泛采用氨作为能源载体的最大障碍。 10 虽然通过可再生能源发电和电解槽的技术改进有望降低成本,但仍需要进行严格的系统范围优化,以确保可靠且经济实惠的可再生能源的可用性。最近发表了许多评论,研究绿色氨在可再生能源经济中的作用。Yapicioglu 等人 12 研究了一系列氨生产和消费技术。Rouwenhorst 等人 13 专注于 1 至 10 MW 之间的工厂,回顾了各种最新技术进展,并设计了优化的生产设施。Valera-Medina 等人 10 专门研究了氨到电力的途径,解释了使用氨作为能源所需的许多技术考虑因素。牛津大学工程科学系,帕克斯路,牛津,OX1 3PJ,英国。电子邮件:rene.banares@eng.ox.ac.uk