成本降低是近期从占主导地位的金线键合向铜线键合转变的主要驱动力。封装成本的其他降低来自基板和引线框架的新发展,例如,QFP 和 QFN 的预镀框架 (PPF) 和 uPPF 降低了电镀和材料成本。但是,由于表面粗糙和镀层厚度薄,某些新型引线框架上的二次键合(针脚键合)可能更具挑战性。最近引入了钯涂层铜 (PCC) 线来改进裸铜线的引线键合工艺,主要是为了提高可靠性和增强针脚键合工艺。需要进行更多的基础研究来了解键合参数和键合工具对改善针脚键合性的影响。本研究调查了直径为 0.7 mil 的 PCC 线在镀金/镍/钯的四方扁平无引线 (QFN) PPF 基板上的针脚键合工艺。使用两种具有相同几何形状但不同表面光洁度的毛细管来研究毛细管表面光洁度对针脚式键合工艺的影响。这两种毛细管类型分别为常用于金线键合的抛光表面光洁度类型和表面光洁度更粗糙的颗粒光洁度毛细管。比较了无引线粘贴 (NSOL) 和短尾之间的工艺窗口。研究了键合力和表层剪切波幅度等工艺参数的影响。工艺窗口测试结果表明,颗粒毛细管具有较大的工艺窗口,出现短尾的可能性较低。结果表明,较高的剪切波幅度可增加成功填充针脚式键合的机会。为了进一步比较毛细管表面光洁度,测试了 3 组具有不同键合力和剪切波幅度的参数设置。对于所有三组测试的毛细管,粒状毛细管的粘合强度质量更好。与抛光型相比,粒状毛细管的针脚拉力强度更高。开发了该过程的有限元模型 (FEM),以更好地理解实验观察结果。从模型中提取了导线和基底界面处导线的表面膨胀量(塑性变形),并将其归因于粘合程度。该模型用于证实不同表面光洁度下粘合的实验观察结果。
摘要 银线近年来已成为一种新型键合材料,但用户和现场工程师对其可靠性性能问题(包括故障机理和金属间化合物 (IMC) 形成)仍然存在分歧。本研究介绍了一种新型高纯度 96Ag-3Pd-1Au 合金(96% Ag)银线,并通过键合性和可靠性测试评估了其在铝键合焊盘上的键合性能。用于表征银线特性的可靠性测试包括高温储存寿命测试 (HTST) 和带温度和湿度的无偏高加速应力测试 (uHAST)。使用了两种具有不同氯离子含量的模具化合物。绿色化合物的氯离子含量低于 10 ppm,普通化合物的氯离子含量低于 27 ppm。对 HTST150'C 和 175'C 下 2000 小时的键合性、IMC 形成(Ag 2 Al、Ag 3 Al)和生长速率进行了测量,并根据 uHAST 的微观结构表征确定了可能的失效机制,其中由于原电池反应和 Cl- 离子在足够的水分和热能下发生重复的氧化和还原反应,而 Ag-Al IMC 和 Al 垫的还原反应导致形成微裂纹失效。
[2] Aibin Yu、C. S. Premachandran、R. Nagarajan、C. W. Kyoung、Lam Quynh Trang、R. Kumar、Li Shiah Lim、J. H. Han、Yap Guan Jie 和 P. Damaruganath,“MEMS 谐振器晶圆级真空封装的设计、工艺集成和特性”,电子元件和技术会议 (ECTC),2010 年第 60 届论文集,2010 年,第 1669-1673 页。1669-1673。
Michael Gallagher、Rosemary Bell、Anupam Choubey、Hua Dong、Joe Lachowski、Jong-Uk Kim、Masaki Kondo、Corey O'Connor、Greg Prokopowicz、Bob Barr、陶氏电子材料
使用各种悬臂探针针尖多次探测具有薄焊盘铝 (Al)(厚度小于 0.7µ)的 IC 键合焊盘。探针标记由具有各种针尖直径的实验性高强度探针卡创建。将探针针尖的有限元模型与探针标记擦洗长度相匹配,以更学术地了解随着探针参数的变化会发生什么。使用此模型进行模拟将有助于未来进行物理实验困难或成本高昂的情况。实验中的键合焊盘包括各种安森美半导体电路焊盘下 (CUP) 结构,该结构具有 Al 金属化和二氧化硅 (SiO 2 ) 互连,先前已证明与传统 IC 键合焊盘相比具有更强的抗开裂能力。随着未来产品的焊盘缩小,更小的球尺寸和键合接触面积是可取的,但这会加剧探针标记的任何不利影响,因为键合下方的相对面积百分比会增加。实验评估包括对各种探针标记范围内不同球直径的金 (Au) 球键合的键合拉力强度 (BPS) 和键合剪切力 (BS),以开始检查引线键合中惯常的“探针标记面积”最大限制的有效性。数据表明,大而深的探针标记确实会导致键合球提升失败,尤其是对于未优化的键合配方。看来探针标记深度,而不是面积,是键合可靠性中最不利的因素。在更受控制和“温和”的制造情况下,预计不会出现与探针标记键合相关的问题。
图 2:典型球/月牙互连的简化表示 自动引线键合机于 20 世纪 80 年代初推出。当时,大多数互连都是使用铝线制作的。随着对高可靠性需求的增加,金线变得更加普遍。随着封装密度的增加,引线互连键合间距减小。细间距的初始解决方案是楔形键合,因为楔形工具设计允许将引线紧密键合(并排)。 细间距互连 在更小的空间内封装更多元件的需求导致 ASIC 设计变得更加密集。人们曾认为,互连细间距封装的最佳方法是通过楔形键合。在 20 世纪 90 年代后期,典型的键合间距从约 110µm 减小到约 90µm。在此期间,平均楔形工具尖端大约是球键合毛细管工具尖端宽度的三分之一。毛细管材料缺乏支持细间距工艺的稳健性。从那时起,改进的材料使细间距设计成为可能,其中尖端尺寸小于 70µm 的情况并不罕见。更小的特征、更高的密度和更多的 I/O 需要细间距。在当今的细间距环境中,任何使用楔形键合机键合的设备都可以使用球焊设备更快地键合。图 3 和图 4 描绘了使用 1.0 mil 导线通过球焊互连的 55µm 细间距架构。
金属间化合物的生长和转变伴随着金/金属间化合物界面处键合内部以及键合外围的铝接触垫中空隙的形成。空隙是由于 Al 和 Au 原子扩散速率差异(Kirkendall 效应)形成的空位聚结而产生的。金属间化合物的形成使键合更坚固,但由于金属间化合物的体积变化,与 Au 和 Al 相比,键合更脆,机械应力更大 [1, 3]。由于金属间化合物的形成,引线键合的电阻仅增加几十毫欧姆 [1, 4]。在退化的初始阶段,空隙不会显著影响键合的机械强度和接触电阻。然而,长时间暴露在高温下会增加空洞,直至键合变得机械脆弱和/或电阻增加到可接受水平以上,从而导致设备故障。
金属间化合物的生长和转变伴随着金/金属间化合物界面处键合内部以及键合外围的铝接触垫中空隙的形成。空隙是由于 Al 和 Au 原子扩散速率差异(Kirkendall 效应)形成的空位聚结而产生的。金属间化合物的形成使键合更坚固,但由于金属间化合物的体积变化,与 Au 和 Al 相比,键合更脆,机械应力更大 [1, 3]。由于金属间化合物的形成,引线键合的电阻仅增加几十毫欧姆 [1, 4]。在退化的初始阶段,空隙不会显著影响键合的机械强度和接触电阻。然而,长时间暴露在高温下会增加空洞,直至键合变得机械脆弱和/或电阻增加到可接受水平以上,从而导致设备故障。
热超声键合过程中,金球和铝合金金属化层之间的焊接是通过界面处金和铝的固态混合以及金铝金属间相的形成而发生的。由该金属间相组成的总键合面积的比例通常称为金属间覆盖率,缩写为 IMC。超声波对于通过摩擦形成 IMC 至关重要 [1-3],但在整个界面上并不均匀,开始时是离散的岛状物,在超声波的作用下生长,最终将球锚定在铝金属化层上。如果优化了键合参数,大部分界面面积(多达 70-80%)应由 IMC 组成。在拉力测试期间,金-铝界面保持机械强度所需的最小 IMC 量只需略大于导线的横截面积。但是,如果界面大面积未键合,空气、空气中的污染物和环氧模塑料就会渗入球底,从而导致后续组装步骤中发生氧化和腐蚀反应。因此,最大化 IMC 是优化球键合工艺的重要部分。IMC 的测量通常是通过使用不会侵蚀金属间化合物或金的 KOH 溶液溶解 Al 键合垫 [4] 并观察球底面来完成的。确定形成坚固球键合所需的 IMC 的精确量并不是一门精确的科学,但经验准则是,真正键合球面积的 70% 应由 Au-Al 金属间化合物组成。有两种常用方法可用于查看和记录金球底面图像中的金属间化合物覆盖率,以便随后使用图像分析软件进行测量。第一种是使用光学显微镜 (LM),第二种是使用扫描电子显微镜 (SEM)。SEM 要求将样品镀金,并放置在 SEM 腔中,然后抽真空并进行检查,而 LM 不需要特殊且耗时的样品制备,被认为比 SEM 更快、更容易。但是,每种方法都有其优点,并且需要了解某些因素,尤其是 LM,才能正确测量 IMC。光学显微镜可以使用不同的照明模式,与 SEM 不同,在显微镜和照明下对样品进行对准可能会使 IMC 的识别和测量变得复杂,并且很容易导致错误的测量。但是,虽然覆盖率的光学评估更快,但也更难以解释。在半导体封装的组装工程鉴定中,由于耗时较少,因此似乎更倾向于采用光学评估金属间覆盖率。在新封装鉴定的组装工程阶段,可能需要通过 SEM 测量 IMC 来获得详细信息。但是,在大规模生产过程中,光学测量可能更合适,因为它们耗时较少。本文的目的是提供