传统的放大方法与指南RNA的分子不适应,因此第一作者和前博士后研究员LoϊcBinan制定了一种创新的策略,以在其原始站点生成每个指南RNA的许多本地副本。通过将其与称为Merfish的基于荧光的空间转录组方法结合起来,在空间环境中,witturb-fish可以揭示每个扰动的身份和细胞的转录组。
高达 2/3 英寸的 C 型接口镜头 高达 750 万像素、2.8µm 像素大小的传感器 我们 C 系列镜头的加固 (Cr) 设计(50g 冲击) 还提供 3.5mm 至 50mm 焦距仪表 (Ci) 版本 TECHSPEC® 紧凑型加固 (Cr) 系列定焦镜头提供稳定的加固功能,保护镜头免受损坏,同时在冲击和振动后保持光学指向和定位。所有单独的镜头元件都粘合到位,以减少图像上的物体偏移。此外,这些镜头具有坚固的机械结构,配有简化的对焦和不锈钢锁定 C 型接口夹。TECHSPEC® Cr 系列定焦镜头非常适合校准成像系统,例如测量和计量、3D 立体视觉、机器人和传感、自动驾驶汽车和物体跟踪。物体到图像的映射是
Assess Phase ........................................................................................................................................ 127 Mobilize Phase .................................................................................................................................... 128 Migrate Phase ...................................................................................................................................... 128 Conclusion .................................................................................................................................... 129 Contributors ................................................................................................................................. 130 Document revisions ..................................................................................................................... 131 Notices .......................................................................................................................................... 132 AWS Glossary ............................................................................................................................... 133
TechSpec®坚固的蓝色系列M12镜头已经稳定了坚固的耐加工,可保护镜头免受损害,同时减少像素移位并在冲击和振动后保持光学指向稳定性。每个镜头都由几个精密玻璃光学元件组成,这些光学元件在紧凑的铝制外壳内粘合到位。粘合玻璃光学器件也可以防止最小的动作,通常会导致像素移动。即使在重大冲击和振动后,也要保持对图像映射的对象;如果对象的中心映射到中心像素上,则将始终映射到同一中心像素。TechSpec坚固的蓝色系列M12镜头非常适合校准成像应用,例如测量和测量,3D立体声视觉,机器人和传感,自动驾驶汽车和对象跟踪。这些镜头可提供从f/2.5到f/8的各种f/#选项。
摘要:通用的很少的语义分割(GFSS)目标在学习一组基本类别的分割后,使用一些带注释的示例将新颖对象类别进行分割。典型的GFSS培训涉及两个阶段 - 基类学习,然后是新颖的课程和学习。尽管现有方法表现出了希望,但在新颖的班级数量显着时,它们通常会挣扎。大多数当前方法都冻结了编码器主链以保持基类精度;但是,冻结编码器骨架可以严重阻碍新班级中新型信息的同化。为了应对这一挑战,我们建议在GFSS中使用增量学习策略来学习编码器骨干和新型类原型。受到低级适应技术(LORA)最近成功的启发,我们通过新颖的重量分解方法向GFSS编码器主链引入了Increthorth学习。我们新提出的等级自适应权重合并策略对在编码器主链各个层中吸收的新颖性不同。在我们的工作中,我们还将增量学习策略介绍给新型类别的类原型学习。我们在Pascal-5 I和Coco-20 I数据库上进行了广泛的实验,展示了增量学习的有效性,尤其是当新颖的类人数超过基础类别时。使用我们提出的基于权重分解的增量学习(WFIL)方法,以概括性的语义分段建立了一组新的最先进的精度值。
在本文中,我们在严格的定量信息流(QIF)(QIF)的框架中分析了LDP与舒适的组合,以及有关推理攻击产生的弹性的原因。qif自然捕获随机机制作为信息理论通道的(组合),从而可以以自然的方式精确建模各种推理攻击,并在这些攻击下测量私人信息的泄漏。我们利用K -RR机制与Shuflim模型的特定组合的对称性来实现准确表达泄漏的封闭公式。,我们提供了公式,这些公式显示了如何改善当地模型中泄漏的保护,并研究了泄漏的行为,以表现出LDP机制的隐私参数的各种值。
动态光学镜头镜片是透射自适应光学器件,旨在轻松整合到任何光学系统中以校正光学畸变。这些镜头的设计使用10、16或25mm透明的光圈,以覆盖常见的学生尺寸和M32 x 0.75安装线,可以通过使用线程适配器来适应常见的客观螺纹类型。它们可以使用波前传感器或自动软件校正系统进行封闭环控制,以进行像差校正。动态光学变形镜头也可以与低功率激光器一起用于梁的塑形,例如将高斯光束塑造为椭圆形或方形束轮廓或立方相。这些镜片是光学相干断层扫描(OCT),共聚焦显微镜,2光子显微镜和明亮场显微镜的畸变校正的理想选择,以提高图像质量。
动态光学镜头镜片是透射自适应光学器件,旨在轻松整合到任何光学系统中以校正光学畸变。这些镜头的设计使用10、16或25mm透明的光圈,以覆盖常见的学生尺寸和M32 x 0.75安装线,可以通过使用线程适配器来适应常见的客观螺纹类型。它们可以使用波前传感器或自动软件校正系统进行封闭环控制,以进行像差校正。动态光学变形镜头也可以与低功率激光器一起用于梁的塑形,例如将高斯光束塑造为椭圆形或方形束轮廓或立方相。这些镜片是光学相干断层扫描(OCT),共聚焦显微镜,2光子显微镜和明亮场显微镜的畸变校正的理想选择,以提高图像质量。