摘要 马达加斯加长春花(Catharanthus roseus)属于夹竹桃科。这种药用植物原产于马达加斯加,可生产许多重要药物,包括单萜吲哚生物碱 (MIA) 长春新碱和长春花碱,用于世界各地治疗癌症。在这里,我们提供了一个新版本的 C. roseus 基因组序列,该序列是通过结合 Oxford Nanopore Technologies 长读和 Illumina 短读获得的。这个更连续的组装由 173 个支架组成,总长度为 581.128 Mb,N50 为 12.241 Mb。使用公开的 RNAseq 数据,预测并功能注释了 21,061 个蛋白质编码基因。总共 42.87% 的基因组被注释为可转座因子,其中大多数是长末端重复序列。随着对 MIA 产生植物基因组的了解日益增多,这个更新版本应该会简化进化研究,从而更好地了解 MIA 生物合成途径的进化。
本最佳实践的目标是确保长春花生物碱仅通过静脉途径给药。如果通过鞘内途径而非静脉途径给药,长春花生物碱(例如,长春花 BLAS 汀、长春瑞滨、长春花 CRIS 汀、长春花 CRIS 汀脂质体)可能导致致命的神经系统影响。长春花 CRIS 汀特别成问题,是与意外鞘内给药相关的最常见报告的长春花生物碱。世界各地都报告了因用注射器将药物注射到脊髓液而不是静脉注射而导致死亡的病例。例如,全球已报告了 130 多例通过错误途径注射长春花 CRIS 汀的病例。这种情况经常发生在误用长春花 CRIS 汀注射器而不是阿糖胞苷、氢化可的松或甲氨蝶呤注射器给同一患者注射脊髓液时。当鞘内注射长春花碱时,中枢神经系统会受到破坏,并从注射部位向外扩散。这种用药错误的少数幸存者经历了毁灭性的神经损伤。尽管各国和国际安全机构一再警告,但因这种错误而死亡的事件仍然时有发生。目前市售的所有长春花碱的产品标签上都带有特殊警告(“仅供静脉注射——如果通过其他途径给药会致命”)。
本最佳实践的目标是确保长春花生物碱仅通过静脉途径给药。如果通过鞘内途径而非静脉途径给药,长春花生物碱(长春花 BLAS 汀、长春瑞滨、长春花 CRIS 汀、长春花 CRIS 汀脂质体等)可能导致致命的神经系统影响。长春花 CRIS 汀特别成问题,是与意外鞘内给药相关的最常见报告的长春花生物碱。世界各地都报告了因用注射器将药物注射到脊髓液而不是静脉注射而导致死亡的病例。例如,全世界已报告了 130 多例长春花 CRIS 汀被注射到白血病患者的病例。这种情况经常发生在误用长春花 CRIS 汀注射器而不是阿糖胞苷、氢化可的松或甲氨蝶呤注射器时,这些药物应该注射到同一白血病患者的脊髓液中。当长春花碱被鞘内注射时,中枢神经系统会受到破坏,并从注射部位向外扩散。这种用药错误的少数幸存者经历了毁灭性的神经损伤。尽管各国和国际安全机构一再警告,但这种错误造成的死亡仍然时有发生。目前市售的所有长春花碱的产品标签上也都带有特殊警告(“仅供静脉注射——如果通过其他途径给药会致命”)。
本最佳实践的目标是确保长春花生物碱仅通过静脉途径给药。如果通过鞘内途径而非静脉途径给药,长春花生物碱(长春花 BLAS 汀、长春瑞滨、长春花 CRIS 汀、长春花 CRIS 汀脂质体等)可能导致致命的神经系统影响。长春花 CRIS 汀特别成问题,是与意外鞘内给药相关的最常见报告的长春花生物碱。世界各地都报告了因用注射器将药物注射到脊髓液而不是静脉注射而导致死亡的病例。例如,全世界已报告了 130 多例长春花 CRIS 汀被注射到白血病患者的病例。这种情况经常发生在误用长春花 CRIS 汀注射器而不是阿糖胞苷、氢化可的松或甲氨蝶呤注射器时,这些药物应该注射到同一白血病患者的脊髓液中。当鞘内注射长春花碱时,中枢神经系统会受到破坏,并从注射部位向外扩散。这种用药错误的少数幸存者经历了毁灭性的神经损伤。尽管各国和国际安全机构一再警告,但因这种错误而死亡的事件仍然时有发生。目前市售的所有长春花碱的产品标签上都带有特殊警告(“仅供静脉注射——如果通过其他途径给药会致命”)。
* 通讯作者:moumahuya1@yahoo.com 摘要 本研究从药用植物长春花 (长春花) 中分离细菌和真菌内生菌。共获得 13 种内生细菌分离株。筛选细菌分离株以产生植物生长促进剂(吲哚乙酸、固氮和磷酸盐溶解)以及针对强效人类病原体的抗菌剂。在这些分离株中,11 种细菌分离株产生吲哚-3-乙酸(浓度范围为 11-74 µg/ml),3 种分离株能够固氮,3 种分离株可在体外溶解不溶性磷酸三钙。在初步筛选中,5 种内生分离株的提取物通过琼脂孔扩散法体外测定似乎对 3 种病原体(大肠杆菌、葡萄球菌属、弧菌属)具有抗菌活性。
• 蒽环类抗生素 例如表柔比星、丝裂霉素 • 铂化合物 例如顺铂、卡铂 • 紫杉烷 例如紫杉醇、多西他赛 • 长春花生物碱 例如长春新碱、长春花碱 • 抗代谢物 例如卡培他滨、5FU、阿糖胞苷 • 烷化剂 例如苯丁酸氮芥、环磷酰胺 • 拓扑异构酶 1 例如伊立替康 • 拓扑异构酶 2 例如依托泊苷 • 其他 例如天冬酰胺酶,砷
第 12 章 有丝分裂抑制剂的故事 – 长春花 – 紫杉醇 221009dj3 抗癌药物:发现和寻求治愈方法的故事 Kurt W. Kohn,医学博士,哲学博士 名誉科学家 分子药理学实验室 发育治疗学分部 美国国立癌症研究所 马里兰州贝塞斯达 kohnk@nih.gov 第 12 章 有丝分裂抑制剂的故事:紫杉醇和长春花。 本章介绍的抗癌药物是在某些植物或海洋生物中发现的毒素,它们可以阻断在有丝分裂过程中将染色体拉开的微管。微管还将必需分子沿着神经细胞的轴突向下传送,这就是这些药物会损害神经细胞的原因。 来自天然产物的抗癌药物 自然界的动物、植物和微生物充满了生物战剂,不同物种之间会发生冲突。天然毒药可以抵御捕食者和竞争对手。有些药物历来被人们用来下毒或治病。有些药物被用作治疗癌症的药物(Cragg 和 Newman,2004;Vindya 等人,2015)。由于这些药物也是毒药,因此,与大多数用于癌症化疗的药物一样,必须仔细调整给患者的剂量,以在不产生过多毒性的情况下对癌症产生显著作用。那么,这些微管毒药是如何起作用的呢?在有丝分裂期间,新形成的染色体对被称为微管的纤维拉开。然后每个子细胞都会得到一对新形成的染色体对,尽管癌细胞通常有异常的有丝分裂,从而产生具有异常染色体组的细胞。抗微管药物的主要作用是削弱有丝分裂时的细胞分裂。然而,与大多数癌症化疗一样,这些微管结合药物仅对那些比关键正常组织对它们更敏感的癌症有效。我将讲述两类抗微管药物的故事,它们
微管在真核细胞的增殖、运输、信号传导和迁移中发挥着多种关键作用。因此,已开发出多种微管结合剂,用于不同的目的,包括用作杀虫剂、抗寄生虫剂和抗癌剂。在哺乳动物细胞中,微管既存在于间期细胞中,也存在于分裂细胞中。在后者中,组成有丝分裂纺锤体的微管具有高度动态性,对治疗抑制剂极其敏感。这解释了为什么改变微管功能的化合物已被证明对癌症患者具有高度活性。50 多年前发现的长春花生物碱 1 和近 40 年前首次分离的紫杉烷类药物目前用于治疗多种适应症,包括实体瘤 2 3 和血液系统恶性肿瘤 。它们最常用于联合化疗方案,包括一些治愈性 4 – 6
虽然植物是宝贵天然产物的丰富来源,但生产这些产品用于商业应用往往具有挑战性。通常有机合成对于可行的商业产品来说过于昂贵,并且生物合成途径通常非常复杂,以至于将它们转移到微生物中并非易事或不可行。对于不适合农业生产天然产物的植物,毛状根培养物为生产平台提供了一个有吸引力的选择,该平台提供遗传和生化稳定性、快速生长和无激素培养基。代谢工程和合成生物学工具在设计毛状根以及生物反应器技术方面取得的进展已达到该技术的商业应用即将实现的地步。我们讨论了毛状根的不同应用。我们还以理解长春花毛状根中萜类吲哚生物碱途径的进展为例,说明了途径发现和途径工程方面的进展和挑战。
多倍体/多非整倍体巨癌细胞 (PGCC/PACC) 在肿瘤中很常见,与肿瘤异质性、抗癌治疗、肿瘤复发、转移、恶性肿瘤、免疫抑制、肿瘤微环境调节和癌症干细胞密切相关。高级别恶性肿瘤中 PGCC/PACC 的丰度明显高于低级别肿瘤,转移灶中 PGCC/PACC 的丰度明显高于原发性肿瘤,化疗后复发性肿瘤中 PGCC/PACC 的丰度明显高于治疗前肿瘤。还发现这些细胞中存在程序性死亡配体 1 (PD-L1) 等免疫抑制蛋白过度表达。已知此类细胞可逃避由主要抗癌剂(包括紫杉烷、长春花生物碱和铂类化疗)诱导的细胞毒性。因此,它们负责形成有利于肿瘤生长和存活的微环境。然而,导致这些细胞形成的分子机制尚不清楚。