∗ Michael Gofman(通讯作者,Gofman@mail.huji.ac.il)就职于耶路撒冷希伯来大学和罗切斯特大学。赵进(Jinzhao@ckgsb.edu.cn)就职于长江商学院。我们感谢 Sabrina Howell(讨论者)、Ron Kaniel、Adrien Matray、Cade Metz、Michael Roach、Scott Stern、Zvi Wiener、2019 年斯坦福 HAI-AI 指数圆桌研讨会和 2021 年 SFS Cavalcade NA 的参与者,以及希伯来大学、阿尔伯塔大学和 UCSC-BIU-BGU 虚拟研讨会的研讨会参与者提供的意见。Michael Gofman 感谢阿尔弗雷德·P·斯隆基金会的资金支持(拨款编号:G-2020-14005)。赵金感谢尤因·马里昂·考夫曼基金会的资金支持(拨款编号:G-201806-4434)和 Crunchbase 对其数据库的访问权限。我们感谢 Luis Azar Barrionuevo、陈侃、Theo Mambu、Ayobami Sanusi、Botong Shang 和 Yuchi Yao 提供的出色研究协助。所有错误均由我们自己承担。我们已阅读《金融学杂志》的披露政策,没有利益冲突需要披露。
摘要:净初级生产力(NPP)可以间接反映植被的CO 2固定能力,但是由于气候变化和人类活动的影响,其时空动力学在某种程度上会发生变化。在这项研究中,NPP被用作研究中国长江盆地(YRB)重要生态系统中素食碳能力变化的指标。我们还探讨了NPP对气候变化和人类活动的反应。我们对2003年至2020年YRB生态系统内NPP的时间动力学和空间变化进行了全面分析。此外,我们还采用了剩余分析来定量评估气候因素和人类活动对NPP变化的贡献。研究发现如下:(1)在18年期间,盆地内的平均NPP为543.95 GC/m 2,显示出明显的向上趋势,增长率约为3.1 GC/m 2; (2)在NPP中表现出越来越多的趋势的区域占研究总区域的82.55%。盆地稳定性相对较高的区域占总面积的62.36%,而稳定性低的区域占2.22%,主要位于西丘阿平原的亨格登山脉; (3)NPP的改善是由人类活动和气候变化共同驱动的,人类活动对NPP的增长更为重要。特别是,贡献总计为65.39%,人类活动贡献了59.28%,气候变化贡献了40.01%。本研究提供了对人类活动和气候变化对植被生产率的贡献的客观评估,为未来的生态系统发展和环境计划提供了关键见解
移动处理器:海思、展讯、ASR、松果、中兴 (Sanechip) 服务器 /AI:海思、寒武纪、澜起、阿里巴巴、亿智科技、华芯通、大鱼、ThinkForce、Illuvatar、寒武纪、比特大陆、兆芯、龙山、亿邦 GPU:景嘉、中芯 MCU:兆易创新、君正、紫光国芯、中芯国际、士兰微、汇顶、大唐、华大、聚辰、宜信、迈德微、汇纳微 RF IC:锐迪科、万芯、华为、卓胜微、中兴微 消费电子:瑞芯微、全志、晶晨、炬芯 触摸 / 指纹 IC:汇顶、思立德、Fortsense、百特莱、集创北方、比亚迪 CMOS 图像传感器:韦尔半导体 (OVT)、格芯、思比科、艺迪、华大、集创北方 驱动 IC:中智科技、晶门科技、集创北方 智能卡:同方国芯、大唐、华大、国民技术、复旦、华虹 IC 存储器:兆易创新、长江存储、长鑫、福建金华、Reliance Memory (Rambus/Giga JV)、ISSI、聚辰科技 监控 / 视频:华为、富瀚、中星微、君正、神龙芯、国科、亿智、大华、依图、地平线 FPGA:国云科技、复旦微、紫光国芯、华大
然而,正如罗杰·德福吉斯 (Roger Des Forges) 在众多城墙建筑案例研究之一中所观察到的:“然而,迄今为止,我们还没有对中国历史从远古到现在的整个城墙建筑模式进行系统的解释。”1 德福吉斯瞄准的主要是现代化的一个主导叙事,即城墙是前现代或封建社会以及封闭的传统帝国的象征;因此,在中国过去,城墙被认为是连续的和无处不在的。这一观点的必然结果是,20 世纪早中叶这些城墙的拆除代表了工业化共和国的夷平力量。城墙修建的一般历史以及其他大型基础设施的历史问题在于,它们很大程度上基于中央发布的命令以及当今对历史基础设施的性质、耐久性和有效性的假设。例如,托尼奥·安德拉德(Tonio Andrade)继罗纳德·纳普(Ronald Knapp)和罗杰·德斯·福吉斯(Roger Des Forges)2之后,假设中国人没有建造大炮,因为城墙太厚;大炮毫无用处。相比之下,欧洲城市的城墙较薄且破旧不堪,因此值得投资在那里发展。尽管现在可以根据有关战争的综合数据来证明欧洲军事创新的合理性,但对于城墙和其他基础设施的特征,却不能这样说。与中国长城是遍布中国大地的均匀坚固建筑的假设相反,考古报告和地方历史记录表明,中国长城、道路和桥梁的物质性、规模,甚至存在与否,在时间和空间上都存在很大差异。例如,我根据一份 13 世纪的私人田野报告汇编的 GIS 数据集显示,当时淮河和长江地区的大多数县没有城墙或只有废城墙。 3 同样,如果我们仔细阅读明代案例研究,比如张德良对河南省城墙的部分调查,就会发现,就在 1449 年中央下令修建长墙和城墙之前,“(山东和河南的)城市……大多没有城墙和护城河,即使有,也年久失修。”4
特色与定位:注重人才培养与科研“教学+创新竞赛+科研+产学研+国际合作”一体化发展模式。 全系现有教师100余人,其中国家杰青、长江学者、国家万人计划等省部级以上人才7人,高级职称20人,博士学位占75%。 本系设有机械工程博士后流动站和一级学科博士点,机械制造及其自动化、机械设计及理论、机电工程二级学科博士点。 本系设有机械制造及其自动化、机械设计及理论、机电工程、车辆工程四个硕士学位授予点,设有全英语留学生专业——机械制造及其自动化。 系设有机械工程及其自动化(国家首批优秀本科专业)、智能制造工程(教育部首批专业)、工业工程、工业设计等本科专业。 系建设了近10门上海市精品、重点课程,获得省级教学成果一等奖2项,每年学生在国家级、省部级竞赛中获一等奖50余项。 形成了“智能基础部件”、“智能制造技术与应用”、“机器人与智能设计”、“光机电智能检测与装备”、“机电液一体化控制”等5个稳定的科研团队。近三年来,康复系获得科研经费1.3亿余元,获省部级科技奖一等奖2项,取得发明专利160余万件,与航空航天、汽车交通、海洋装备制造等领域近50家企业建立了产学研合作,建成了“智能康复机器人及可穿戴康复设备”上海市高水平地方高校重点创新团队。 康复系与美国普渡大学、德国亚琛工业大学、加拿大多伦多大学、英国南安普顿大学签订了3+1+1联合培养协议,与美国伍斯特理工大学、美国圣母大学合作开展联合毕业设计项目。 康复系每年为学生提供来自方舟/方耀、东洋电装、新松、耿奇、蔡司等最高32万元的奖学金。
发展的转变。我们是“清醒水和郁郁葱葱的山脉是宝贵的资产”的概念的主动促进者和模范从业者。我们维持了稳定石油供应并增加天然气产能的措施,并且由于天然气生产在公司的国内石油和天然气同等产量中的份额已进一步增长到53.5%,因此石油和天然气成分得到了进一步优化。根据“清洁能源替代,战略继承和绿色过渡”的一般三步策略,我们维持了用新能源进行石油和天然气整合和开发的方法,并构建了一种新的能源供应系统模型,该模型由相互互补的多种能源组成。我们进一步发展了我们在新兴行业中的地位。随着新的能源项目的完成,包括在kashgar,Xinjiang建造百万千瓦的光伏(“ PV”)站,以及在Yumen的水电解氢生产设施,以及对Potevio New Energy Co.的公平批准,包括新能源的库存,并建立了一个新的能源,我们可以建立一个历史上的建立,以实现新的历史,并实现了新的历史,并实现了新的范围。每年有1150万吨标准煤,在过去一年中增加了44%。“石油,气体,地热,电和氢能”的模式开始形成。我们实施了一项全面的行动计划,以解决气候变化,结合了“减少碳利用,碳的替代,碳替代和碳存储”。我们加强了碳排放控制和碳资产管理,增强的节能,减少消费,减少排放和清洁能源替代措施,以促进整个产业链的绿色发展和CCUS的工业化。我们积极参与建造碳固化森林和碳中性森林,参加了全球气候治理和碳市场交易。我们还从事绿色企业的发展,促进了我们的生态和环境保护和治理体系的现代化以及针对更严格的标准的能力。我们为蓝天,晴朗的水和晴朗的土地而战继续,重点关注来源控制和预防污染,因为我们严格地实施了黄河水域,长江经济带和钥匙海域的生态和环境保护措施。我们加强了生态建筑和恢复治理方面的努力,为生物多样性保护建立了自制的保护区,致力于增强生态系统多样性,稳定性和可持续性。
所有战场 7,192 - - 巴勒斯坦 (GSM) 1945 年 9 月 3 日至 1948 年 6 月 30 日 754 - - 马来亚 (GSM) 1948 年 6 月 16 日至 1960 年 7 月 31 日 1,442 - - 柏林空运 (GSM) 1948 年 6 月 25 日至 1949 年 10 月 6 日 25 - - 长江 (NGSM) 1949 年 4 月 20 日至 1949 年 7 月 31 日 45 - - 朝鲜 1 (UN) 1950 年 6 月 27 日至 1954 年 7 月 27 日 1,129 - - 运河区 (GSM) 1951 年 10 月 16 日至 1954 年 10 月 19 日 405 - - 肯尼亚 (AGSM) 1952 年 10 月 21 日至 1956 年 11 月 17 日 95 - - 塞浦路斯 (GSM) 1955 年 4 月 1 日至1959 年 4 月 18 日 358 - - 近东(苏伊士) (GSM) 1956 年 10 月 31 日至 1956 年 12 月 22 日 24 - - 阿拉伯半岛 (GSM) 1957 年 1 月 1 日至 1960 年 6 月 30 日 60 - - 刚果 (ONUC) 1960 年 7 月 10 日至 1964 年 6 月 30 日 2 - - 文莱 (GSM) 1962 年 12 月 8 日至 1962 年 12 月 23 日 7 - - 婆罗洲 (GSM) 1962 年 12 月 24 日至 1966 年 8 月 11 日 140 - - 塞浦路斯 (GSM) 1963 年 12 月 21 日至 1964 年 3 月 26 日 9 - - 塞浦路斯 2 (联塞部队) 1964 年 3 月 27 日至今 4 - - - 南阿拉伯 (GSM) 1964 年 8 月 1 日至 1967 年 11 月 30 日 160 - - 马来半岛 (GSM) 1964 年 8 月 17 日至 1966 年 8 月 11 日 39 - - 北爱尔兰 3,4 (GSM) 1969 年 8 月 14 日至 2007 年 7 月 31 日 1,441 722 719 其中北爱尔兰以外 53 53 - 佐法尔岛 (GSM) 1969 年 10 月 1 日至 1976 年 9 月 3 日 25 - - 罗得西亚 1979 年 12 月 1 日至 1980 年 3 月 20 日 5 - - 南大西洋(福克兰群岛) 1982 年 4 月 2 日至 1982 年 10 月 21 日 237 - - 海湾 1 (GSM) 1990 年 8 月 2 日至 1991 年 3 月 7 日 45 24 21 1991 年至 2003 年 4 月 30 日 7 0 7 柬埔寨 (UNAMIC/UNTAC) 1991 年 10 月 1 日至 1993 年 9 月 30 日 1 0 1 巴尔干半岛 5,6 (北约) (联合国) 1992 年 7 月 1 日至今 72 13 59 塞拉利昂 (OSM) 2000 年 5 月 5 日至 2002 年 7 月 31 日 5 1 4 阿富汗 5,7 (OSM) 2001 年 9 月 11 日至 2021 年 8 月 28 日 457 405 52 伊拉克 (Op TELIC) 2003 年 1 月 20 日至 2011 年 5 月 22 日 178 135 43 利比亚 (北约) 2011 年 3 月 19 日至 2011 年 10 月 31 日 1 0 1 伊拉克和叙利亚 5 (Op Shader) (OSM) 2014 年至今 6 1 5 马拉维 (Op CORDED) 2019 年 2 月 26 日至今 1 0 1
其他原因 9 所有战场 7,192 - - 巴勒斯坦 (GSM) 1945 年 9 月 3 日 至 1948 年 6 月 30 日 754 - - 马来亚 (GSM) 1948 年 6 月 16 日 至 1960 年 7 月 31 日 1,442 - - 柏林空运 (GSM) 1948 年 6 月 25 日 至 1949 年 10 月 6 日 25 - - 长江 (NGSM) 1949 年 4 月 20 日 至 1949 年 7 月 31 日 45 - - 韩国 1 (UN) 1950 年 6 月 27 日 至 1954 年 7 月 27 日 1,129 - - 运河区 (GSM) 1951 年 10 月 16 日 至 1954 年 10 月 19 日 405 - - 肯尼亚 (AGSM) 1952 年 10 月 21 日 至 1956 年 11 月 17 日 95 - - 塞浦路斯 (GSM) 1956 年 4 月1955 年至 1959 年 4 月 18 日 358 - - 近东(苏伊士) (GSM) 1956 年 10 月 31 日至 1956 年 12 月 22 日 24 - - 阿拉伯半岛 (GSM) 1957 年 1 月 1 日至 1960 年 6 月 30 日 60 - - 刚果 (ONUC) 1960 年 7 月 10 日至 1964 年 6 月 30 日 2 - - 文莱 (GSM) 1962 年 12 月 8 日至 1962 年 12 月 23 日 7 - - 婆罗洲 (GSM) 1962 年 12 月 24 日至 1966 年 8 月 11 日 140 - - 塞浦路斯 (GSM) 1963 年 12 月 21 日至 1964 年 3 月 26 日 9 - - 塞浦路斯 2 (联塞部队) 1964 年 3 月 27 日至今 4 - - 1964 13 - - 南阿拉伯 (GSM) 1964 年 8 月 1 日至 1967 年 11 月 30 日 160 - - 马来半岛 (GSM) 1964 年 8 月 17 日至 1966 年 8 月 11 日 39 - - 北爱尔兰 3,4 (GSM) 1969 年 8 月 14 日至 2007 年 7 月 31 日 1,441 722 719 其中北爱尔兰以外 53 53 - 佐法尔岛 (GSM) 1969 年 10 月 1 日至 1976 年 9 月 3 日 25 - - 罗得西亚 1979 年 12 月 1 日至 1980 年 3 月 20 日 5 - - 南大西洋(福克兰群岛) 1982 年 4 月 2 日至 1982 年 10 月 21 日 237 - - 海湾 1 (GSM) 1990 年 8 月 2 日至 1991 年 3 月 7 日 45 24 21 伊拉克空中行动(OSM) 1991 年 7 月 16 日至 2003 年 4 月 30 日 7 0 7 柬埔寨 (UNAMIC/UNTAC) 1991 年 10 月 1 日至 1993 年 9 月 30 日 1 0 1 巴尔干半岛 5,6 (北约) (联合国) 1992 年 7 月 1 日至今 72 13 59 塞拉利昂 (OSM) 2000 年 5 月 5 日至 2002 年 7 月 31 日 5 1 4 阿富汗 5,7 (OSM) 2001 年 9 月 11 日至 2021 年 8 月 28 日 457 405 52 伊拉克 (Op TELIC) 2003 年 1 月 20 日至 2011 年 5 月 22 日 178 135 43 利比亚 (北约) 2011 年 3 月 19 日至 2011 年 10 月 31 日 1 0 1 伊拉克和叙利亚 5 (Op Shader) (OSM) 2014 年 8 月 9 日至今 6 1 5 马拉维 (Op CORDED) 2019 年 2 月 26 日至今 1 0 1
[4] Abeba Birhane、William Isaac、Vinodkumar Prabhakaran、Mark Diaz、Madeleine Clare Elish、Iason Gabriel 和 Shakir Mohammed。 2022.权力归人民?参与式人工智能的机遇与挑战。算法、机制和优化中的公平与访问(美国弗吉尼亚州阿灵顿)(EAAMO '22)。美国计算机协会,纽约,纽约州,美国,第 6 篇文章,8 页。 https://doi.org/10.1145/3551624.3555290 [5] Rishi Bommasani、Drew A. Hudson、Ehsan Adeli、Russ Altman、Simran Arora、Sydney von Arx、Michael S. Bernstein、Jeannette Bohg、Anthony Bosselut 等人。 2021. 论基础模式的机遇与风险。 arXiv 预印本 arXiv:2108.07258(2021)。 https://crfm.stanford.edu/assets/report.pdf [6] Zalan Borsos、Raphael Marinier、Damien Vincent、Eugene Kharitonov、Oliver Pietquin、Matt Sharifi、Oliver Teboul、David Grangier、Marco Tagliasacchi 和 Neil Zeghidour。 2022.AudioLM:一种用于音频生成的语言建模方法。 arXiv:2209.03143 [cs.SD] [7] 马修·伯特尔 (Matthew Burtell) 和托马斯·伍德赛德 (Thomas Woodside)。 2023.人工智能影响力:人工智能驱动的说服分析。 http://arxiv.org/abs/2303.08721 arXiv:2303.08721 [cs]。 [8] C2PA。 2024. 引入官方内容凭证图标 - C2PA — c2pa.org。 https://c2pa.org/post/contentcredentials/。 [访问日期:2024 年 1 月 17 日]。 [9] 维多利亚·克拉克、弗吉尼亚·布劳恩和尼基·海菲尔德。 2015.主题分析。定性心理学:研究方法实用指南 222,2015 (2015),248。[10] Joshua Cloudy、Jaime Banks、Nicholas David Bowman。 2023. The Str(AI)ght Scoop:人工智能线索减少对敌对媒体偏见的看法。数字新闻 11,9(2023 年 10 月),1577–1596。 https://doi.org/10.1080/21670811.2021.1969974 [11] 谷歌DeepMind。 2024.合成器ID。 https://deepmind.google/technologies/synthid/。访问日期:2024-1-1 [12] Upol Ehsan 和 Mark O. Riedl。 2020.以人为本的可解释人工智能:走向反思性社会技术方法。在 HCI International 2020 - 最新论文:多模态性和智能中,Constantine Stephanidis、Masaaki Kurosu、Helmut Degen 和 Lauren Reinerman-Jones(编辑)。 Springer International Publishing,Cham,449-466。 [13] Passant Elagroudy、Jie Li、Kaisa Vanänen、Paul Lukowicz、Hiroshi Ishii、Wendy Mackay、Elizabeth Churchill、Anicia Peters、Antti Oulasvirta、Rui Prada、Alexandra Diening、Giulia Barbareschi、Agnes Gruenerbl、Midori Kawaguchi、Abdallah El Ali、Fiona Draxler、Robin Welsch 和 Albrecht dt。 2024 年 CHI 计算机系统人为因素会议(美国夏威夷檀香山)(CHI '24 EA)的扩展摘要 https://doi.org/10.31234/osf.io/v4mfz [14] Ziv Epstein、Mengying C Fang、Antonio A Arechar 和 David G Rand。1996。价值敏感设计。互动 3、6(1996 年 12 月)、16–23。 https://doi.org/10.1145/242485.242493 [16] Ozlem Ozmen Garibay、Brent Winslow、Salvatore Andolina、Margherita Antona、Anja Bodenschatz、Constantinos Coursaris、Gregory Falco、Stephen M. Fiore、Ivan Garibay、Keri Grieman、John C. Havens、Marina Jirotka、 Hernisa Kacorri、Waldemar Karwowski、Joe Kider、Joseph Konstan、Sean Koon、Monica Lopez-Gonzalez、Iliana Maifeld-Carucci、Sean McGregor、Gavriel Salvendy、Ben Shneiderman、Constantine Stephanidis、Christina Strobel、Carolyn Ten Holter 和 Wei Xu。 2023. 以人为本的六大人工智能挑战。国际人机交互杂志 39,3 (2023),391–437。https://doi.org/10.1080/10447318.2022.2153320 arXiv:https://doi.org/10.1080/10447318.2022.2153320 [17] Colin M. Gray、Cristiana Santos、Nataliia Bielova、Michael Toth 和 Damian Clifford。2021. 黑暗模式和同意横幅的法律要求:互动批评视角。在 Proc. CHI '21 中。ACM,日本横滨,1-18。 https://doi.org/10.1145/3411764.3445779 [18] Matthew Groh、Aruna Sankaranarayanan、Nikhil Singh、Dong Young Kim、Andrew Lippman 和 Rosalind Picard。2023 年。人类对文字记录、音频和视频中的政治言论 Deepfakes 的检测。arXiv:2202.12883 [cs.HC] [19] Philipp Hacker、Andreas Engel 和 Marco Mauer。2023 年。监管 ChatGPT 和其他大型生成式 AI 模型。在 2023 年 ACM 公平、问责和透明度会议论文集(美国伊利诺伊州芝加哥)(FAccT '23)中。计算机协会,美国纽约州纽约,1112-1123。 https://doi.org/10.1145/3593013.3594067 [20] Geoff Hart。1996 年。“五个 W”:受众分析新任务的旧工具。技术交流 43,2(1996 年),139-145。http://www.jstor.org/stable/43088033 [21] Natali Helberger 和 Nicholas Diakopoulos。2023 年。ChatGPT 和 AI 法案。Internet Pol. Rev. 12,1(2023 年 2 月)。[22] Jonathan Ho、William Chan、Chitwan Saharia、Jay Whang、Ruiqi Gao、Alexey Gritsenko、Diederik P Kingma、Ben Poole、Mohammad Norouzi、David J Fleet 等人。2022 年。Imagen 视频:使用扩散模型生成高清视频。 arXiv:2210.02303 [cs.CV] [23] Mohammad Hosseini、David B Resnik 和 Kristi Holmes。2023 年。在撰写学术手稿时披露使用人工智能工具的伦理问题。研究伦理 19,4 (2023),449–465。https://doi.org/10.1177/17470161231180449 arXiv:https://doi.org/10.1177/17470161231180449 [24] Nanna Inie、Jeanette Falk 和 Steve Tanimoto。2023 年。设计参与式人工智能:创意专业人士对生成式人工智能的担忧和期望。在 2023 年 CHI 计算系统人为因素会议的扩展摘要中。1–8。 [25] Chenyan Jia、Alexander Boltz、Angie Zhang、Anqing Chen 和 Min Kyung Lee。2022 年。理解算法标签与社区标签对超党派错误信息感知准确性的影响。Proc. ACM Hum.-Comput. Interact。6,CSCW2,第 371 条(2022 年 11 月),27 页。https://doi.org/10.1145/3555096 [26] 贾长江、蔡岩、余元德和谢天浩。2016 年。5W+1H 模式:系统映射研究视角及云软件测试案例研究。系统与软件杂志 116(2016 年),206-219。https://doi.org/10.1016/j.jss.2015.01.058 [27] Michael H. Kernis 和 Brian M. Goldman。2006 年。真实性的多组分概念化:理论与研究。实验社会心理学进展。第 38 卷。爱思唯尔,283-357。 https://doi.org/10.1016/S0065-2601(06)38006-9