“电子设备”是指计算机;计算机显示器;计算机外围设备;含有阴极射线管的设备;打印机;或电视机,无论谁将设备交由收集者、运输者或回收者保管。“电子设备”不包括:任何机动车或其任何部件;照相机或摄像机;便携式或固定式收音机;无线电话;家用电器,如洗衣机、干衣机、热水器、冰箱、冰柜、微波炉、烤箱、炉灶或洗碗机;在功能或物理上属于较大设备一部分的设备,用于工业、图书馆、研发或商业环境;安全或反恐设备;监控仪器或系统;恒温器;手持式收发器;任何类型的电话;便携式数字助理或类似设备;计算器;全球定位系统接收器或类似导航设备;包含阴极射线管、阴极射线管设备、平板显示器或类似视频显示器(与较大设备不可分离)的商业医疗设备;或其他医疗器械,因为“器械”一词是根据《联邦食品、药品和化妆品法》第 21 USC § 321(h) 条定义的,并且该条款会不时进行修订。
SW 110 含有蓄电池、汞开关、阴极射线管玻璃和其他活性玻璃或多氯联苯电容器等部件的电气和电子组件废物,或受镉、汞、铅、镍、铬、铜、锂、银、锰或多氯联苯污染的废物
罗克韦尔柯林斯公司报告称,其波音 767 飞机的大型飞行显示器升级已获得欧洲航空安全局 (EASA) 型号认证。此次升级和认证由罗克韦尔柯林斯公司、波音公司、大西洋航空集团和 L2 航空共同完成。新的 767 和 757 飞行显示系统也获得了美国联邦航空管理局的认证,它带来了一系列创新技术,可显著增强态势感知能力、提高可靠性五倍、减少 80% 的线路维护工作、提供积极的投资回报并减轻航空电子设备的重量。所有这些,加上缓解阴极射线管 (CRT) 过时的挑战,使飞机为未来空域的发展做好了准备。
电子技术的快速发展。这使得伺服驱动仪表在 20 世纪 50 年代成为可能,设计师可以自由地将传感器放置在远离实际仪表的位置。随着数字航空电子技术的不断发展,人们越来越关注显示设计。随着飞机性能的提高,飞行员可以获得更多信息,显示器的数量和复杂性都在增加。从 1970 年到现在,由于电子显示单元 (EDU) 的引入,驾驶舱的外观发生了重大变化。20 世纪 80 年代初,全数字空客 A310 和波音 757/767 在民航中引入了阴极射线管 (CRT) 飞行显示器,这标志着“玻璃驾驶舱”发展的分水岭,“玻璃驾驶舱”与 MFD 同义。典型的玻璃驾驶舱配置包括多达六个电子显示单元、备用飞行仪表(液晶显示器 (LCD) 或机电仪表)和一些
• 输出单元负责以用户可读的形式产生输出。 • 显示器以类似于电视屏幕上显示的方式显示信息。 • 显示器上的图像由数千个称为像素的微小彩色点组成。 • CRT(阴极射线管)在玻璃管的背面包含一个电子枪。 • 液晶是用于在 LCD 中创建屏幕上每个像素的材料。 • TFT(薄膜晶体管)是每个像素内设置电荷的设备。 • PDP(等离子显示面板)是平板显示器。 • 等离子技术利用含有带电离子化气体的小电池。 • 打印机将计算机中的信息和数据打印到纸上。 • 打印机分为两类:击打式打印机和非击打式打印机。 • 扬声器以电流的形式从声卡接收声音。 • 绘图仪是一种用于在纸上绘制图形的图形输出设备。 端口:它是计算机与内部或外部设备之间的接口连接点。一些
电子技术的快速发展。这使得伺服驱动仪表在 20 世纪 50 年代成为可能,设计师可以自由地将传感器放置在远离实际仪表的位置。随着数字航空电子技术的不断发展,显示设计受到越来越广泛的关注。随着飞机性能的提高,飞行员可以获得更多的信息,显示器的数量和复杂性也在增加。从 1970 年到现在,由于引入了电子显示单元 (EDU),驾驶舱的外观发生了重大变化。20 世纪 80 年代初,全数字空客 A310 和波音 757/767 在民航中引入了阴极射线管 (CRT) 飞行显示器,这标志着“玻璃驾驶舱”演变的分水岭,“玻璃驾驶舱”是 MFD 的同义词。典型的玻璃驾驶舱配置包括多达六个电子显示单元、备用飞行仪表(液晶显示器 (LCD) 或机电仪表)和一些
AAIB 航空事故调查科 AC 交流电 ACP 音频控制面板 ADF 自动测向辅助系统 飞机综合数据系统 ALTN 备用 AMM 飞机维护手册 AMU 音频管理单元 ANR 主动降噪 APU 辅助动力装置 ASR 空中安全报告 ATC 空中交通管制 BAT 电池 BEA 民航安全调查和分析局 BITE 内置测试设备 BMC 引气监控计算机 BTC 总线连接接触器 CAA 民航局 CAS 计算空速 CFDIU 中央故障显示接口单元 CFDS 中央故障显示系统 CMC 中央维护计算机 CRT 阴极射线管 CVR 驾驶舱语音记录器 DAR 直接访问记录器 DC 直流电 DFDR 数字飞行数据记录器 DMC 显示管理计算机 DME 测距设备 DP 差动保护 DU 显示单元 EASA 欧洲航空安全局 EEC 发动机电子控制器 ECAM 电子中央飞机监控
概述:提高火力发电厂的效率已变得非常重要,以减少二氧化碳 (CO 2 ) 排放,从而最大限度地减少全球变暖效应。认识到这些情况,北海道电力公司 (HEPCO) 新建了 700 兆瓦的豊藤厚真发电站4 号机组是一座采用日本最高蒸汽压力和温度条件 25 MPa-600°C/600°C 的燃煤发电厂,于 2002 年 6 月竣工。日立公司设计并建造了发电厂的主要设备涡轮发电机。通过开发能够适应高温高压蒸汽条件的高性能蒸汽轮机、采用新开发的冷凝管布置以平衡蒸汽流入并优化冷凝效率的冷凝器以及其他尖端技术,该设计实现了出色的效率和高可靠性。通过使用基于 CRT(阴极射线管)的操作系统进行集中操作和监督,并在 100 英寸大屏幕上共享运行数据,发电厂的运行和操作也得到了显着改善。这使得少数人员可以从中央控制室操作该工厂。
本章介绍了视网膜扫描显示器在头盔式飞行员-车辆接口以及面板式 HUD 和 HDD 应用中的性能、安全性和实用性。由于 RSD 组件技术发展如此迅速,因此参考了定量分析和设计方面,以便更完整地描述为直升机开发的第一个高性能 RSD 系统。视觉显示器在封装光线以形成图像的方式上存在显著差异。视网膜扫描显示器(图 6.1 中所示的 RSD)是一种相对较新的光机电设备,最初基于红、绿和蓝衍射极限激光光源。激光束通过视频信息进行强度调制,光学组合成单个全色像素束,然后由由微型振荡镜组成的 ROSE 扫描成光栅图案,就像阴极射线管 (CRT) 的偏转线圈将电子束写入荧光屏一样。 RSD 与 CRT 不同,因为电子到光子的转换发生在光束扫描之前,因此完全消除了荧光屏及其再辐射、光晕、饱和度和其他亮度和对比度限制因素。这意味着 RSD 与其他现有显示技术有着根本的不同,因为 RSD 没有平面发射或反射表面 — ROSE 直接创建光学瞳孔。与 CRT 一样,RSD 可以扫描出斑点