摘要 电子束 (e-beam) 产生的等离子体在施加交叉电场和磁场 (E × B) 的情况下有望用于低损伤材料处理,并应用于微电子和量子信息系统。在圆柱形电子束 E × B 等离子体中,电子和离子的径向约束分别通过轴向磁场和径向电场实现。为了控制电子的轴向约束,这种电子束产生的等离子体源可能包含一个称为反阴极的导电边界,该边界位于等离子体与阴极轴向相对的一侧。在这项工作中,结果表明,改变反阴极电压偏置可以控制反阴极收集或排斥入射电子的程度,从而可以控制热电子(电子能量在 10-30 eV 范围内)和束电子群约束。有人提出,反阴极偏压对这些不同电子群形成的影响也与弱湍流和强朗缪尔湍流之间的转变有关。
摘要对于医疗传感设备,例如伤口愈合贴片,需要提供可穿戴和长期可用的电源。 这就需要经济高效、重量轻的电池。 我们在此提出一种由 Zn 阳极和聚(3,4-乙烯二氧噻吩):聚(苯乙烯磺酸盐)(PEDOT:PSS)阴极组成的金属空气电池。 PEDOT:PSS 层通过薄膜沉积而成,由于其高粘附性而用作阴极,无需粘合剂。 分析了两种不同厚度的薄膜类型。 评估了 1-丁基-3-甲基咪唑辛基硫酸盐离子液体(据报道也充当稳定剂)对电性能的影响。 电极表现出低表面电阻率和相当大的放电容量。 结果表明,PEDOT:PSS 在空气电极中适当地充当了 O 2 氧化还原反应基质和导电粘合剂,这意味着 PEDOT:PSS 薄膜适合用于 Zn-空气电池的阴极。此外,我们展示了一种聚合物生物相容性锌空气电池装置,总厚度约为 2 毫米,易于组装、重量轻且经济高效。
摘要:Lini 0.5 Mn 1.5 O 4(LNMO)阴极的长期电化学循环寿命(LES)(LES)和对细胞衰竭机制的知识不足是雄辩的致命弱点对实际应用的雄辩,尽管它们具有较大的承诺,可以降低lithium-ion Batteries的成本(Libs)。在此,提出了一种工程的工程策略-LE界面以增强LIBS的循环寿命。通过简单的slot-slot-die coating,通过离子 - 电子(Ambiall)混合陶瓷 - 聚合物 - 聚合物电解质(IECHP)将阴极活性颗粒与LE之间的直接接触通过将溶胶 - 凝胶合成截短的八面体形的LNMO颗粒封装。IECHP覆盖的LNMO阴极显示出250个循环的能力逐渐衰减,1000次充电循环后的容量降低了约90%,显着超过了未涂层的LNMO阴极的能力(在980个周期后的〜57%)中,在1 m lipf 6中,ec in in 1 m lipf 6 in 1 m lipf 6 in in 1 m lipf 6 in in 1 c in in 1 cy n in 1 m lipf 6 in in ec:Dmc:通过聚焦离子束扫描电子显微镜和飞行飞行时间二级离子质谱法检查了两种类型的阴极之间的稳定性差异。这些研究表明,原始的LNMO在阴极表面产生不活动层,从而减少了阴极和电解质之间的离子转运,并增加了界面电阻。IECHP涂层成功克服了这些局限性。因此,目前的工作强调了IECHP涂层的LNMO作为1 M LIPF 6电解质中的高压阴极材料的适应性,以延长使用。拟议的策略对于商业应用来说是简单且负担得起的。
摘要目的:提出一种消除刺激瞬态的新方法,该方法利用了电兴奋的神经组织的绝对难治时期。背景:电刺激通常会产生明显的信号伪像,这些信号伪影可能会掩盖重要的生理信号。从这些信号中删除伪像并了解潜在信息可以提供客观的电路参与度,并有可能驱动神经调节研究和疗法的范围。方法:我们对五个连续的帕金森氏病患者进行了颅内生理研究,他们接受了深度脑刺激(DBS)手术,这是他们常规护理的一部分。单极刺激(阴极或阳极)通过DBS电极成对通过一系列刺激间间隔传递。来自相邻未使用的电极触点的记录使用宽带采样和精确的同步来在绝对耐火周期内生成刺激瞬态的稳健模板。然后以不同的间隔从记录中减去这些刺激瞬变的模板,以提取和分析残余神经电位。结果:掉伪影后,残留信号表现出绝对和相对难治性的表情,并指示神经活动的时间。阴极和阳极DBS脉冲产生了局部组织激活的不同模式,显示出与先前刺激的相位独立性。阴极刺激比阳极刺激产生的局部组织反应更强,与临床观察到较低的激活阈值的临床观察。可检测到的可检测神经反应发生在短峰潜伏期(刺激后0.19至0.38 ms),在去除前完全或部分被刺激伪影遮住了。然而,阴极和阳极脉冲引起的伪影模式等效但相反。解释:拟议的伪影去除技术通过允许直接测量局部组织反应而无需刺激极性反转,模板缩放或专门的过滤器来增强先前的方法。这种方法可以整合到未来的神经化系统中,以可视化刺激诱发的神经潜力,否则这些神经潜力将被刺激伪像所掩盖。
最近,富含Ni的过渡金属氧化物(Lini X Mn Y Co Z O 2 Ni-Rich NMC,X $ 0.7)已获得对锂离子电池(LIB)的兴趣,主要是由于它们的高特征率较高的c速率(最高220 mA H G-G-g-1)和较低的成本。1,2 LINI 0.8 CO 0.1 Mn 0.1 O 2(NMC811)和其他富含Ni的层次氧化物的发展使它们可以在电动汽车Libs中用作阴极材料。3传统上,NMC811电极是使用N-甲基-2-吡咯烷酮(NMP)溶剂产生的,该溶剂既有毒又昂贵。4为了追求NMC811电极的更可持续和绿色的生产,已经研究了水基加工。但是,这带来了挑战。5 - 7例如,在水加工过程中,可以去除颗粒表面上的碳酸锂残留物。8然而,据报道,富含Ni的NMC材料可以与水反应
†该材料基于美国能源部电力办公室(OE)的工作。这项研究使用了美国能源部(DOE)科学用户设施的高级光子来源的资源de-ac02-06ch11357。这项研究使用了美国能源部(DOE)科学用户设施办公室(DOE)由Brookhaven National Laboratory为DOE科学办公室运营的美国能源部(DOE)科学用户设施办公室的National Synchrotron Light Source II的Beamline 7-BM(QA)(QAS)。de-sc0012704。这项工作是在综合纳米技术中心进行的,该中心是科学用户设施,该办公室为美国能源部(DOE)科学办公室运营。我们感谢Andrea Bruck博士的海报设计。Sandia国家实验室是由霍尼韦尔国际公司(Honeywell International Inc.)全资子公司Sandia,LLC国家技术与工程解决方案公司管理和运营的多个实验室,该实验室由美国国家能源部国家核安全管理局(NANED NAUD SECUCTION ADVINOCATY)根据合同DE-NA0003525进行。
抽象响应紧迫的需求,以减轻由于化石燃料消耗而导致的气候变化影响,因此有一个集体推动向可再生和清洁能源过渡。但是,此举的有效性取决于超过当前锂离子电池技术的有效储能系统。与其他系统相比,具有明显高理论特异性容量的锂氧电池已成为有前途的解决方案。然而,在排出产品形成过程中,较差的阴极电极电导率和缓慢动力学的问题限制了其实际应用。在这项工作中,首先基于原理的密度函数理论用于研究β12-硼苯苯苯甲;作为高性能锂氧气电池的阴极电极材料的电催化特性。计算了β12-硼苯锂的吸附能,电荷密度分布,吉布斯自由能的变化以及超氧化锂(LIO 2)的扩散能屏障。我们的发现揭示了一些重要的见解:发现吸附能为-3.70 eV,这表明LIO 2在放电过程中保持固定在材料上的强烈趋势。LIO 2和β12-硼苯基底物之间的电荷密度分布中的动力学表现出复杂的行为。对吉布斯反应的自由能变化的分析产生的过电势为-1.87 V,该中等值表明在排放产物形成期间自发反应。最有趣的是,状态和频带结构分析的密度表明,在LIO 2吸附后,材料的电导率得到了保留,并提高了材料的电导率。此外,β12-硼苯二苯乙烯的扩散能屏障相对较低,为1.08 eV,这意味着LIO 2的毫不费力地扩散,并且放电过程的速率增加。最终,预测的β12-硼烷的电子特性使其成为有效锂氧气电池的阴极电极材料的强大候选者。
该电池系统中的石墨电极在66 mA g -1的电流密度下显示出70 mA H G -1的可逆特异性c。7随后,带有离子液体电解质的铝离子电池已受到广泛关注。为了增强该系统中铝离子电池的能量密度,研究人员主要致力于搜索具有高压平台,高可逆能力和良好循环稳定性的阴极材料。近年来,包括金属suldes在内的各种材料(MOS 2,8 CO 3 S 4(参考9),金属氧化物(Co 3 O 4,10 SNO 2,11 Tio 2(参考12),金属磷酸盐和磷酸盐(Cu 3 P,13 Co 3 PO 4(参考14),导电聚合物(PANI),15个碳材料(碳纸),16个和基于石墨的材料17,18已被广泛研究为用于铝离子电池的阴极材料。在这些材料中,基于石墨的材料已被广泛研究,因为它们的最高电压高原在2 V vs. Al/Al 3+和稳定的循环性能。但是,石墨的相对较低的特定能力限制了其商业应用。为了提高石墨的特定能力,研究人员主要集中于建造具有高表面积的特殊形态,并引入了多个缺陷和纳米级空隙。例如,Zhang等人。合成的聚噻吩/石墨复合材料,其具有较大表面的层状结构可容纳氯铝酸酯(ALCL 4-)。19在1000 mA g -1的电流密度下,其特征容量达到113 mA h g -1。另外,Lee等人。制备的酸处理的膨胀石墨(AEG)和碱蚀刻石墨(beg),它们具有涡轮结构和无序结构,