• 该项目的整体相关性体现在对 DOE EERE 氢燃料电池技术办公室 (HFCTO) 计划的影响上,特别是通过解决关键技术障碍来提高燃料电池的使用寿命,并实现氢和燃料电池技术的商业化和普及,目标是中型和重型卡车。这将降低温室气体排放和柴油发动机尾气污染物,建设清洁能源基础设施,加强美国制造业,并确定私营部门采用的途径。• 该项目有可能通过推广和实现可持续能源资源以及创建和维护国内制造基地和劳动力来大幅减少对化石燃料的依赖,以广泛部署氢技术,这符合 DOE 氢能计划、氢能地球计划和美国国家清洁氢战略和路线图。• 该项目的技术目标与 DOE 百万英里燃料电池卡车联盟一致,进展和结果将与联盟协调。• 该项目正在解决广泛应用氢燃料电池技术的主要技术障碍,并将通过以下方式对当前最先进的技术产生影响:
摘要:由于电动汽车和便携式电子设备的繁荣,高能存储设备的全球市场规模不断增加,导致电池工业生产了许多废物锂离子电池。阴极材料的解放和消除型是改善从支出的锂离子电池中得出的回收的必要程序,并启用了直接回收途径。在这项研究中,基于促进与粘合剂和二甲基亚氧化二甲基(DMSO)共溶性的相互作用,超临界(SC)CO 2具有创新的适应性以使用过的锂离子电池(LIB)回收。结果表明,解放阴极颗粒的最佳实验条件是在70℃的温度和80 bar压力下处理20分钟。在处理过程中,将聚乙烯氟(PVDF)溶解在SC流体系统中,并收集在二甲基亚氧化二甲基亚氧化二甲基(DMSO)中,如傅立叶变换红外光谱仪(FTIR)所检测到的。在最佳条件下,阴极的释放产量达到了96.7%,因此,阴极颗粒分散到较小的片段中。之后,可以将PVDF沉淀和重复使用。此外,在建议的过程中,由于粘合剂分解而没有氟化氢(HF)气体发射。建议的SCO-CO 2和共溶性系统有效地将PVDF与锂离子电池电极分开。因此,由于其效率,相对较低的能耗和环境良性特征,这种方法是一种替代性预处理方法。
全稳态电池有可能提高锂离子电池的安全性,能量和功率密度。但是,刚性固体接口的有限稳定性仍然是一个关键挑战。在高温烧结和电化学循环期间,阴极/电解质界面特别容易降解,形成了二级相,从而阻碍电荷运输并限制细胞性能。对这些阶段的实验分析是具有挑战性的,因为它们产生了对典型特征技术敏感的薄电阻膜。在这项研究中,我们使用结构分辨的电化学模拟来研究电阻阶段在阴极/电解质界面对细胞性能的影响并确定显性降解机制。我们使用一种新型的电阻膜模型扩展了模拟框架,该模型根据相间特性说明了界面处的额外电荷传递电阻。我们的方法将连续模拟与密度功能理论和实验数据的见解相结合,包括次级离子质谱测量。这使我们首次评估了电阻膜对全细胞性能降解的影响。
[(DNA)2 - AG 16 Cl 2] Q(q = 10)(图1)。10我们的先前理论工作提供了氯化物配体的证据,并首先了解了聚类的电子结构和光吸收10的特征,以及有关如何在DFT计算中处理这些系统在溶剂溶液中如何处理这些系统的基准,相对于溶剂效应,交换量的水平,交换相互作用的水平以及溶液中的内在电荷。11,我们在参考文献中发现。11,簇电荷对最高占用和最低的未占用分子轨道(HOMO-LUMO GAP)以及计算的UV-VIS吸收光谱之间的能量差距明显影响,然后可以直接与早期发布的实验数据进行比较。一个明确的结论是,电荷Q = 10 E给出了与实验数据和电子基态最大的Homo -Lumo间隙的绝对最佳匹配,反映了
基于聚合物的SES具有足够高的离子电导率和出色的热稳定性,高环境稳定性,出色的柔韧性和可扩展的处理,其成本低。[19]基于聚乙烯(PEO)的聚乙烯。但是,它们有一些缺点:室温下的离子电导率低和氧化分解电位(低于4 V)。[20,21,22]在各种聚合物中,基于PEO的电解质是对SSB的最广泛研究的,其优势具有良好的电化学稳定性,具有LI阳极,处理性和兼容性。CE-RAMIC的固态电解质(SES)可以提供改善的电导率和电化学窗户。[23]目前,最常见的SES类是聚合物和陶瓷,例如氧化物(例如LLZO),磷酸盐(E.gnasicon),硫化物(例如Li 10 Gep 2 S 12,Li 6 Ps 5 X)和卤化物(例如Li 3含6,li 3 incl 6,li 3 ybr 6)。[2,18]在复合固体电解质(CSE)或杂交电解质的开发中,将少量(高达40 wt%)的无机活性填充剂(Perovskite,Garnet,Lisicon,Lisicon等)掺入已经广泛报道。[22,23]无机活性填充物可以在CSE的大部分区域形成连续的离子通道,并促进快速离子运输以提供更高的离子电导率,而不会构成基质的灵活性。[24]仍然有足够的空间来发展更好的CSE,以达到更高的离子连接性,而不会降低其机械性能。[25]
推荐引用推荐引用James,Winervil,“制造压力和NMC阴极组成对LPSCL电解质的影响,以改善固态电池性能”(2023年)。论文。罗切斯特技术学院。从
摘要:富含Li的锰(LRMO)阴极材料被认为是下一代锂离子电池(LIB)最有前途的候选者之一,因为它们的特异性很高(250 mAh g-1)和低成本。但是,骑自行车期间不可避免的不可逆转的结构转化会导致不可逆的容量损失,速率性能差,能量衰减,电压衰减等。基于对LRMO的最新研究,本综述强调了LRMO在晶体结构,充电/放电机制研究以及解决当前关键问题的前景方面的研究进度。同时,本综述总结了特定的修改策略及其优点和缺点,即表面涂料,元素掺杂,微/纳米结构设计,高处熵的引入等。此外,提出和讨论了LRMO的未来发展趋势和业务前景,这可能会激发研究人员为LRMO的未来发展创造更多的机会和新想法,以实现高能量密度和延长寿命的LIBS的未来发展。
然而,在实现基于LLZ的ASSB的主要挑战中,具有促进电池操作的属性的阴极/LLZ界面形成,例如低界面电阻和良好的接触。因此,LLZ的densi cation采用了高于1000°C的温度下的犯罪策略,以增强其对LI金属的离子电导率和稳定性。然而,这种高温犯罪不可避免地会导致形成高电阻的电极/LLZ相间,从而导致电池较差。12,13可以通过两条路线形成阴极/LLZ接口。在第一个路径中,涉及将阴极层涂在烧结的LLZ磁盘上,LLZ在升高的温度下呈密密度密度,然后使用诸如筛网印刷和浸入等方法与阴极层涂层,并且所得的PORTODE/LLZ系统是在低温到
当时,IBU-tec 代表客户成功进行了 LFP 试验,随后委托生产了多达 4,000 吨的阴极活性材料。从那时起,我们回转窑生产的材料已在全球众多应用中证明了其品质。
在此,采用基于工业溶剂分馏的 LignoBoost 牛皮纸木质素 (KL) 的二元阴极界面层 (CIL) 策略来制造有机太阳能电池 (OSC)。KL 中均匀分布的苯酚部分使其能够与常用的 CIL 材料(即浴铜灵 (BCP) 和 PFN-Br)轻松形成氢键,从而产生具有可调功函数 (WF) 的二元 CIL。这项工作表明,二元 CIL 在具有大 KL 比兼容性的 OSC 中工作良好,在最先进的 OSC 中表现出与传统 CIL 相当甚至更高的效率。此外,由于 KL 阻断了 BCP 和非富勒烯受体 (NFA) 之间的反应,KL 和 BCP 的组合显著提高了 OSC 的稳定性。这项工作提供了一种简单有效的方法,通过使用木质材料实现具有更好稳定性和可持续性的高效 OSC。