高维分数阶反应扩散方程在生物学、化学和物理学领域有着广泛的应用,并表现出一系列丰富的现象。虽然经典算法在空间维度上具有指数复杂度,但量子计算机可以产生仅具有多项式复杂度的量子态来编码解决方案,前提是存在合适的输入访问。在这项工作中,我们研究了具有周期性边界条件的线性和非线性分数阶反应扩散方程的高效量子算法。对于线性方程,我们分析和比较了各种方法的复杂性,包括二阶 Trotter 公式、时间推进法和截断 Dyson 级数法。我们还提出了一种新算法,该算法将汉密尔顿模拟技术与交互图像形式相结合,从而在空间维度上实现最佳缩放。对于非线性方程,我们采用 Carleman 线性化方法,并提出了一种适用于分数阶反应扩散方程空间离散化产生的密集矩阵的块编码版本。
您的账单上显示了适用于您房产的税阶。如果您想对您的税阶提出上诉,您应该阅读下面标题为对您的房产税阶提出上诉的部分。成人社会关怀税款国务大臣向成人社会关怀当局提出了一项提议。(“成人社会关怀当局”是根据《2014 年关怀法》第 1 部分行使职能的地方当局,即英格兰的郡议会、英格兰没有郡议会的地区的区议会、伦敦自治市议会、伦敦市议会和锡利群岛议会。)该提议是,成人社会关怀当局可以选择在其市政税中征收额外的“税款”,而无需举行全民公投,以帮助该当局从 2016-17 财政年度起承担成人社会关怀支出。该提议最初是针对截至 2019-20 财政年度(包括 2019-20 财政年度)的财政年度提出的。如果国务大臣选择在某个财政年度续签该提议,则需获得下议院的批准。
在本文中,我们提出了一种在 Boussinesq 近似下求解不可压缩 Navier-Stokes 方程的新 3D 方法。开发的数值代码的优势在于使用高阶方法进行时间积分(3 阶 Runge-Kutta 方法)和空间离散化(6 阶有限差分方案)。对数值方法的阶数进行了研究,然后对几种自然对流情况进行了广泛的验证。使用 FreeFem++ 开发了针对同一问题的有限元模拟代码,并针对相同的自然对流情况进行了验证。通过使用浸入边界法对产生热量的内部障碍物进行建模来处理电信机柜的情况。该方法已通过有限元模拟和文献中的许多其他案例进行了验证。我们展示了不同 2D 和 3D 配置的结果,其中障碍物以不同的方式放置在腔体内。还展示了结果,以与机柜中两个散热组件的实验测量结果进行比较。最终扩展并测试了有限元代码,以模拟可用作被动冷却装置的相变材料。
2 Deuring 对应 32 2.1 三幕范畴等价 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . ... 50 2.4.3 非最大阶的情况 . ...
关键词:模型降阶,鲁棒控制系统,线性矩阵不等式,多目标控制,核反应堆功率控制。摘要:埃及试验研究反应堆(ETRR-2)非线性十二阶模型被线性化并降低为低阶模型。在降阶过程中使用了平衡截断、舒尔降阶法、汉克尔近似和互质因式分解等模型降阶方法。反应堆实际上由具有固定调节参数的 PD 控制器控制。建议在反应堆功率控制中使用 LMI 状态反馈、LMI-池分配、H ∞ 和基于观察器的控制器来代替 PD 控制器。LMI、LMI-极点配置的比较,
量子维兰德不等式给出了最小长度 k 的最优上界,使得生成系统中元素的长度为 k 的乘积跨度为 M n ( C )。据推测,k 通常应为 O ( n 2 ) 阶。在本文中,我们概述了迄今为止文献中对该问题的研究情况及其与线性代数中一个经典问题(即代数 M n ( C ) 的长度)的关系。我们提供了量子维兰德不等式的一个通用版本,它以概率 1 给出了最优长度。更具体地说,我们基于 [ 1 ] 证明 k 通常为 Θ(log n ) 阶,而不是像一般情况那样,迄今为止最佳界限为 O ( n 2 log n )。我们的结果意味着随机量子通道的原始性指标有了新的界限。此外,我们得出了这样的结论:几乎任何具有周期性边界条件的平移不变 PEPS(特别是矩阵积态)在边长为 Ω(log n ) 阶的网格上都是局部哈密顿量的唯一基态,从而为长期悬而未决的投影纠缠对态问题提供了新的见解。我们观察到矩阵李代数具有类似的特征,并为随机李生成系统提供了数值结果。