Figure 7. Morphologies and surface roughness values of (a) the initial surface and the polished surface under conditions of (b) without UV-light, (c) TiO 2 film electrode with UV-light, (d) TiO 2 film electrode with UV-light and anodic bias, (e) CeO 2 -TiO 2 composite-film electrode with UV-light and (f) CeO 2 -TiO 2 composite-film elec- trode with UV-light and anodic bias [31] 图 7. (a) 初始表面; (b) 无紫外光条件下抛光表面; (c) 有紫外光并使用用 TiO 2 薄膜电极抛光下表 面; (d) 在有紫外光和阳极偏压的 TiO 2 薄膜电极下抛光表面; (e) 有紫外光并使用 CeO 2 -TiO 2 复合 膜电极下抛光表面; (f) 有紫外光和阳极偏压的 CeO 2 -TiO 2 复合膜电极抛光表面的形貌和表面粗糙 度值 [31]
摘要:多吡咯(PPY)是一种廉价的导电聚合物,具有有效的存储容量,但其有限的溶解度限制了其生产和应用。因此,为了扩大其应用范围,多功能PPY复合材料的设计和研究引起了极大的关注。PPY/铁基复合材料是通过水热方法,聚合方法和一锅方法等方法制备的。有关PPY/铁复合材料的应用的研究主要集中在电容器,电磁波吸收材料,吸附剂,传感器,药物和催化剂等领域。,它们在超级电容器的电极材料,电磁波的吸收,重金属离子的吸附以及催化降解,展示广泛的应用前景中表现出色。随着制备技术的持续发展和应用领域的进一步扩展,PPY/基于铁的复合材料有望在更多领域中发挥重要作用。关键字:polypyrrole;准备方法;复合材料;应用区域
8 2MORO SOLUTIONS G168 8 3R RESEARCH AND PROJECTS RÉMY EF152 9 A&T AEROSPACE F135 9 A2C ADVANCED CARBIDE COATING G128 10 ACDC PARTNERS F120 10 AS INDUSTRIES F154 11 ADB E175 11 ADDEV MATERIALS (DIMEX) F126 12 ADHETEC E162 12 AEREM F125 13 AEROCAMPUS阿基坦 F166 13 AERO COMPOSITES 圣通日 F149 14 AERO SERVICES F133 14 AERO NEGOCE INTERNATIONAL E139 15 AEROTEAM 普瓦图-夏朗德 F149 15 AFPA F166 16 AGB - AEMI 集团 G143 16 空中支援 E133 17 机载概念 G127 17 ALGO'TECH G119 18 ALISAERO E167 18 西南激光应用 D136 19 AQUITAINE ELECTRONIQUE G152 19 ATECA F119 20 ATELIERS BIGATA - CEMG AEROSAUVETAGE - CTS CONSULTING G166 20 AUNIS PRODUCTION INDUSTRIE F149 21 AUROCK F157 21 BAC BOBINAGE F148 22 BEZY AERO - STOKVIS TAPES 法国 G133 22 BODYCOTE E124 23 波尔多 TECHNOWEST F133 23 BUSBY METALS D134 24 C3 TECHNOLOGIES F150 24 CESA-DRONES F133 25 CGR CRISTIN F134 25 CHROME DUR INDUSTRIEL F149 26 CIR E134 26 CLIP INDUSTRIE F138 27 COEURJOLY ETS F149 27 COFIDUR EMS G151 28 COMAT E146 28 CPK CONSULT F166 29 CSA G153 29 DATADVANCE F157 30 DEBITEX G175 30 DIODON 无人机技术 F157 31 DIOTA F166 31 DYNAS+ F157 32 埃切维里亚 G158 32 ELIXIR AIRCRAFT 停机坪 33 EMD BY PIXIEL F166 33 ENSEIGNES HODÉ E128 34 ERME SAS DE135 34 ESTEVE SA D170 35 EXCENT D156 35 FALGAYRAS E165 36 FEDD E176 36 FEELOBJECT F157 37 FLEURET D176 37 FLUOROTECHNIQUE G148 38 FLYOPS E172 38 BÉLIER 铸造厂和车间 G176 39 FREYSSINET 航空涂层 D166 39 FREYSSINET 航空设备
特殊讲座Tokuron 2024.4-2025.3标题:对老化说:氧化还原药理学和精密医学教学人员:Chang Chen;日期和时间:2月27日,星期四,REIWA 5:45-17:15时间和日期:15:45-17:15,2月27日(THU.),2025年:医学研究大楼3楼,医学研究大楼3(3F)语言:英语摘要:人口老化已成为世界各地的重要问题抗氧化剂已被尝试用作抗衰老干预措施但是,临床结果仍然令人失望我们最近提出了精确氧化还原的概念,“ 5R”原理是抗氧化剂药理学的关键,即正确的物种,正确的位置,正确的时间,正确的水平和正确的目标作为氧化还原医学的指南我们的最新结果进一步验证了上述概念我们发现Ca 2+ /钙调蛋白依赖性蛋白激酶IIαs-硝化作用(SNO-CAMKIIα)在学习和记忆任务过程中会增加,而在自然衰老过程中则显着降低在主要的CAMKIIαS-硝基化位点(C280/289V)处于突变的小鼠暴露的认知障碍并减弱了长期增强(LTP)缺乏SNO-CAMKIIα会增加突触I(Syni)磷酸化,从而导致过度突触前释放概率,从而导致学习和记忆反应减少,而不仅在C280/289V小鼠中发生,而且在阿尔茨海默氏病(AD)小鼠和自然衰老的小鼠中也会发生根据“ 5R”原理,我们设计了一个胶分子,该胶分子精确地增加了SNO-CAMKIIα并成功挽救了小鼠的学习和记忆障碍。我们的发现表明,SNO-CAMKIIα的下调是一种新的机制,介导了与衰老有关的学习和记忆下降,并为氧化还原药理学和精密医学提供了新的灯光。有关发言人的信息:Chang Chen教授目前是中国科学院生物物理学研究所(CAS),CAS教授和CAS大学教授和Biomacromolecules国家实验室副主任(2012-20223)的首席研究员。她的主要研究兴趣是一氧化氮和s-硝酸(YL)ation和其他氧信号转导中的其他硫醇修饰。老化和相关疾病中的氧化还原调节;中药的机制。* *生体反応病理学
Liu 等 [36] 在 1950 ℃ 和 50 MPa 压力的 SPS 过 程中,发现随着 TiB 2 的添加量由 5 mol% 增至 30 mol% ,复合陶瓷的硬度降低,断裂韧性增加。 除裂纹偏转和 TiB 2 的钉扎效应使 B 4 C 晶粒细化 ( 从 1.91 μm 减至 1.67 μm) 外,两相间位错的产生, 是 B 4 C 陶瓷增强、增韧的次要原因,其在陶瓷断 裂前吸收能量,造成局部强化 [37–38] 。研究发现, 添加 20 mol% TiB 2 时,复合陶瓷的相对密度为 97.91% ,维氏硬度为 (29.82±0.14) GPa ,断裂韧性 为 (3.70±0.08) MPa·m 1/2 。 3.1.2 Ti 单质引入 与直接添加 TiB 2 相比,在烧结过程中原位反 应生成 TiB 2 可以在较低的烧结温度下获得更高 的密度和更好的机械性能。 Gorle 等 [39] 将 Ti-B( 原 子比 1:2) 混合粉体以 5 wt.% 、 10 wt.% 和 20 wt.% 的比例加入到 B 4 C 粉末中,研磨 4 h 后通过 SPS 在 1400 ℃ 下获得致密的 B 4 C 复合陶瓷。由于 WC 污染,获得了由被 (Ti 0.9 W 0.1 )B 2 和 W 2 B 5 的细颗粒 包裹的 B 4 C 颗粒组成的无孔微结构。当 Ti-B 混合 物的量从 5 wt.% 增至 20 wt.% 时,烧结活化能从 234 kJ·mol −1 降至 155 kJ·mol −1 。含 5 wt.% Ti-B 混 合物的 B 4 C 复合材料的最大硬度为 (3225±218) HV 。由于 TiB 2 的原位形成反应是高 度放热并释放大量能量的自蔓延反应,因此,原 料颗粒界面间的实际温度预计高于 SPS 烧结温 度,同时,液相 W 2 B 5 的形成润湿了 B 4 C 表面, 有助于降低 B 4 C 晶粒的界面能,并加速了沿晶界
Robert Tampé ORCID: 0000-0002-0403-2160 Goethe University Frankfurt tampe@em.uni-frankfurt.de Professor of Biochemistry, Biocenter phone: +49-(0)69-798 29475 Institute of Biochemistry, Director fax: +49-(0)69-798 29495 max-von-laue-str。9,60438 Frankfurt/m。,德国https://biochem.uni-frankfurt.de位置| Academic Career 2001-present Full Professor / Director, Institute of Biochemistry, Goethe University Frankfurt 1998-2001 Full Professor / Director, Physiological Chemistry, Medical Faculty, University Marburg 1996-1998 Assistant Professor in Biochemistry / Biophysics, Technical University (TU) Munich 1996 Habilitation in Biochemistry, TU Munich 1992-1998 Max Planck Research Group Leader, MPI of Martinsried 1992-1998生物化学独立研究小组领导人,Tu Munich 1990-1991 Max Kade奖学金,斯坦福大学Max Kade奖学金(与Harden M. McConnell),美国,1987- 1989年,1987 - 1989年在生物化学中,具有最高荣誉的生物化学(Summa cumaude)的生物化学(cuma cumstadt)1981-191-191-191-191-191-191-191-1997,刺激Darmstadt9,60438 Frankfurt/m。,德国https://biochem.uni-frankfurt.de位置| Academic Career 2001-present Full Professor / Director, Institute of Biochemistry, Goethe University Frankfurt 1998-2001 Full Professor / Director, Physiological Chemistry, Medical Faculty, University Marburg 1996-1998 Assistant Professor in Biochemistry / Biophysics, Technical University (TU) Munich 1996 Habilitation in Biochemistry, TU Munich 1992-1998 Max Planck Research Group Leader, MPI of Martinsried 1992-1998生物化学独立研究小组领导人,Tu Munich 1990-1991 Max Kade奖学金,斯坦福大学Max Kade奖学金(与Harden M. McConnell),美国,1987- 1989年,1987 - 1989年在生物化学中,具有最高荣誉的生物化学(Summa cumaude)的生物化学(cuma cumstadt)1981-191-191-191-191-191-191-191-1997,刺激Darmstadt
图 2 中的红线显示了城市和 Manawatū 区之间不寻常的边界线。左侧空中的边界线形状和位置是由于在河流处划定边界的惯例——出于实际考虑。当河流改道时,边界往往会被遗忘。历史地图(右侧地图)清楚地显示,河道几乎完全遵循领土当局边界 3(红色),过去河流是边界。地图显示了领地位置与 Ashhurst 领地的 Rangitāne Pā 之间的密切(即使不是有些准确)关系,以及旧 Pā 地点如何俯瞰峡谷水上交通和任何从 Pohangina 山谷进入罗赫的人。
Technology, 2021, 201: 108541.[19] Steinke K, Groo L, Sodano H A. Laser induced graphene for in situ ballistic impact damage and delamination detection in aramid fiber reinforced composites [J].Composites Science and Technology, 2021, 202: 108551.[20] 杜晓云 , 李金宝 , 杨斌 , 等 .芳纶树脂液浸渍协同冷压 光制备高强度间位芳纶纸的研究 [J].中国造纸 , 2024, 43(4): 120 - 129.Du X Y, Li J B, Yang B, et al.Study on preparing high strength meta - aramid paper by aramid resin solution impregnation combined with cold pressing[J].China Pulp & Paper, 2024, 43(4): 120 - 129.[21] 关振虹 , 李丹 , 宋金苓 , 等 .易染间位芳纶的制备及其 性能 [J].纺织学报 , 2023, 44(6): 28 - 32.Guan Z H, Li D, Song J L, et al.Preparation and properties of dyeable meta - aramid fiber[J].Journal of Textile Research, 2023, 44(6): 28 - 32.[22] 朱文豪 , 宋欢 , 丁娉 , 等 .沉析纤维长度对间位芳纶纸 性能的影响 [J].中国造纸 , 2024, 43(1): 109 - 115.