限制全球气温上升需要迅速大规模部署减少各个层面碳排放的解决方案。间歇性可再生能源的开发得到了各国政府的大力支持,其产量将大幅增加。这种高发电量的引入带来了一些挑战,特别是在低消耗时期分配高产量。应对这一挑战最受推崇的解决方案之一是整合电转气技术 (P2G)。在这方面,欧盟及其一些成员国已经提出了支持氢气生产和消费的计划。同时,值得注意的是,这些技术的发展战略主要部署在地方层面。为了让地方为能源系统的脱碳做出贡献,各国政府正在将其能源政策的应用扩展到其领土。法国就是这种情况。过去几十年来,法国通过了法律在地方层面扩大能源政策的应用,目的是确保更好、更快地部署能源转型并在 2050 年实现碳中和。因此,法国各地区都设定了开发当地能源资源的目标。法国南部的 SUD 普罗旺斯-阿尔卑斯-蓝色海岸大区 (PACA) 为履行这些空气、能源、环境和气候变化适应责任,设定的目标是到 2050 年实现碳中和,由于该地区拥有大量太阳能资源,因此大规模发展太阳能光伏生产令人担忧。该地区还提出了一项氢能计划,以支持该地区这种能源的发展并为国家努力做出贡献。这项研究采用 TIMES PACA 进行,这是一个代表 PACA 地区能源系统的自下而上的优化模型,分析了 P2G 技术如何促进太阳能资源的开发。结果表明,P2G 技术对于区域能源系统脱碳和可再生能源部署至关重要,是国家和全球脱碳目标所需要的,并有望构建整个氢链。
a 艾克斯马赛大学,CNRS,IM2NP,13451 马赛,法国。b SPINTEC,格勒诺布尔阿尔卑斯大学,CNRS,CEA-SPINTEC,CEA,38000 格勒诺布尔,法国。摘要本文首次在读写操作过程中实时实验研究了 1064nm 激光攻击对 STT-MRAM 单元的影响,以了解传感电路在剧烈温度变化下的行为。技术设计必须考虑到这一点。我们重点介绍了激光发射过程中的读取电流变化,这可能会影响传感电路。我们测量了两种状态之间的切换概率以及照射时间、激光功率和单元尺寸的影响。我们将结果与宽温度范围内的电气特性相关联,表明攻击会以热方式影响 STT-MRAM 行为。总之,可以采取适当的对策。 1. 简介 一种很有前途的非易失性存储器,称为自旋转移力矩磁性随机存取存储器 (STT-MRAM),它将快速写入操作与高密度和显着的耐久性(高达 1013 次循环)相结合 [1,2]。磁隧道结 (MTJ) 由 CoFeB/MgO/CoFeB 堆栈组成,其中 MgO 层用作隧道阻挡层。通过强制自旋极化电流通过设备,可以将单元从反平行 (AP) 状态编程为平行 (P) 状态和反之亦然。自旋电流的横向分量被自由层吸收,导致 CoFeB 铁磁材料磁化发生扭矩诱导反转,即自旋转移力矩 (STT) 效应 [3,4],详见 [5]。磁化方向是 MTJ 中数据编码的形式,其读/写延迟由反转的随机性、器件尺寸和流过各层的电流控制 [6]。MTJ 的一个重要特性是隧道磁阻比 (TMR),定义为 (R AP - RP )/RP ,其中 R AP 和 RP 分别是 AP 和 P 状态的电阻 [7]。本研究的目的是调查红外激光攻击如何影响读取和编程阶段的 STT-MRAM 行为。此外,我们还旨在了解激光攻击的物理贡献,这可能是
1格勒诺布尔阿尔卑斯大学,CEA,LITEN,DTS,LSA,INES,F-38000,法国2UniversitéClermontAuvergne-CNRS,ICCF,F-63000 Clermont-Ferrand,法国,法国,法国,作者:Romain Couderc couderc gerderc lomain coudercǀ emain.main.comain.coudcrc@ic.frc@ic。 +33479792361摘要数十年来,在操作太阳阵列中观察到了由紫外线暴露引起的光伏(PV)模块。不仅仅是一种美学上的不便,这种现象可以严重损害模块的性能,并通过封装的光保护损害其他降解机制。为了更好地理解当前材料中的这种反应,在紫外线照射下,具有紫外线或紫外线商业封装的HJT单子弹模块是在紫外线照射下老化的,并通过视觉检查,荧光成像和闪光测试对其进行检查。仅通过紫外线吸收器稳定的封装物进行了变色。一方面,紫外线吸收器光氧化是导致影响光传输到细胞的黄色发色团的形成。因此,它们导致光生电流的净减少,该电流在加速4200小时后达到4%。另一方面,他们的光漂白解释了模块边缘缺乏变色。根据当前封装配方的行为,必须提高紫外线吸收添加剂的稳定性,以确保设备在30年内的耐用性。限制全球变暖的最有害影响的简介,预计我们的社会的重大变化。太阳能光伏(PV)在过去十年中飙升,到2020年达到821 TWH。在发电方面,1.5°C的情况需要在全球能量混合物中急剧增加可再生能源部分[1]。到2030年需要8倍的容量才能达到零净排放到2050年,这是1.5°C的情况[2]。由于PV系统耐用性对其水平的能源成本(LCOE)[3]和生命周期评估(LCA)[4]的影响很高,因此必须对影响PV模块的不同降解模式进行彻底研究,以确保能量过渡。
下一个用于应对全球挑战的生物技术植物:转基因和新育种技术的贡献AgnèsE。AgnèsE。Ricroch 1,2*,Jacqueline Martin-Laffon 3,Bleuenn Rault 2,Victor C. Pallares 2,Victor C. Pallares 2和Marcel Kuntz 3和Marcel Kuntz 3 1现在/永久地址:iDest,Idest,Paris-Saclie sceaux 3 3 3 3 3格伦布尔阿尔卑斯大学,CNRS,CEA,INRAE,法国,格林布尔 *的细胞和植物生理学 *通讯作者:AgnèsE。Ricroch,电子邮件:agnes.ricroch@universite-paris-paris-paris-paris-saclay..fr摘要该调查的目的是确定和表征自2015年以来的新产品,特别是在2015年以来的新产品,特别是在2015年的新产品(尤其是在2015年)作为基于CRISPR-CAS系统的基因编辑。转基因(基因转移或基因沉默)和基因编辑的特征,这些特征在至少一个国家批准或销售,或在美国具有不受监管的地位,以及全球相关的专利。此外,还阐明了非洲潜在的创新,还研究了非洲大陆的现场试验。编译的数据分为应用类别,包括农艺改善,工业用途和医疗用途,即重组治疗分子或疫苗(包括针对Covid-19)。数据表明,基因编辑似乎是对“经典”转基因的有效补充,其使用并没有下降而不是替代,而是在专利景观中也观察到的趋势。然而,显而易见的基因编辑使用的使用是显而易见的。繁殖特征也观察到类似的差异趋势。与转基因相比,基因编辑增加了某些农作物物种的比例,并减少了批准,未受监管或销售的产品的其他物种的比例。基因编辑还赞成新私人公司的出现。中国及其普遍的公共部门绝大多数占主导地位的专利景观,而不是由美国主导的批准/销售的景观。朝着监管环境将有利于或不鼓励创新的方向的数据点。关键词:基因组编辑,CRISPR-CAS9,粮食安全,分子种植,生物燃料,可食用的疫苗BBTV:香蕉堆顶级病毒; CBD:木薯棕色条纹疾病; CBI:公司业务信息; CRISPR-CAS:群集定期插入短的短篇小学重复序列;欧盟:欧盟; ISAAA:收购农业技术申请的国际服务; ODM:寡核苷酸指导的诱变; TALEN:转录激活剂样效应核酸酶; USDA -APHIS:美国农业部 - 动物和植物健康检查服务。
B.Dieny 1 , ILPrejbeanu 1 , K.Garello 2 , P.Gambardella 3 , P.Freitas 4,5 , R.Lehndorff 6 , W.Raberg 7 , U.Ebels 1 , SODemokritov 8 , J.Akerman 9 , 10 , APir 11 , P.Ac . delmann 2 , A.Anane 13 , AVChumak 12, 14 , A.Hiroata 15 , S.Mangin 16 , M.Cengiz Onbaşlı 17 , Md'Aquino 18 , G.Prenat 1 , G.Finocchio 19 , L.Lopez Diaz , R.C. esenko 22 , P.Bortolotti 13 1. Univ. 1. 格勒诺布尔阿尔卑斯大学、CEA、CNRS、格勒诺布尔 INP、IRIG、SPINTEC,法国格勒诺布尔 2. 比利时鲁汶 Imec 3. 苏黎世联邦理工学院材料系磁学与界面物理实验室,瑞士苏黎世。 4. 国际伊比利亚纳米技术实验室(INL),葡萄牙布拉加 5. 系统与计算机微系统与纳米技术工程研究所(INESC MN),葡萄牙里斯本 6. Sensitec GmbH,德国美因茨 7. 德国英飞凌科技股份公司,德国应用科学研究所,德国明斯特 9. 瑞典哥德堡大学物理系 10. 瑞典皇家理工学院工程科学学院应用物理系 11. 德累斯顿—罗森多夫亥姆霍兹中心,离子束物理和物理研究所,德国迈兴 12. 凯泽斯劳滕工业大学和州立研究中心 OPTIMAS,德国凯泽斯劳滕 13. 法国国家科学研究中心泰雷兹公司巴黎南大学巴黎-萨克雷,帕莱索,法国 14. 维也纳大学物理学院,维也纳,奥地利 15. 约克大学电子工程系,赫斯灵顿,英国 16. 洛林大学让·拉穆尔研究所,南锡,法国 17. 科克大学,伊斯坦布尔,18. 佩科维奇,那不勒斯,意大利 19. 墨西拿大学数学与计算机科学系、物理科学与地球科学系,墨西拿,意大利 20. 萨拉曼卡大学应用物理系,萨拉曼卡,西班牙 21. 约克大学物理系,马德里材料研究所,英国 22 CSIC,西班牙
简介 单位历史和地理位置 直到 2015 年,BrainTech 实验室的研究人员都是 Clinatech 的一部分,这是 CEA-Leti、格勒诺布尔阿尔卑斯大学 (UGA)、格勒诺布尔大学医院和 Inserm 的联合项目,位于 CEA Minatec 校区。目标是在 CEA Leti 校区内建立一个专注于神经技术的转化技术研究单位,由退休教授 Alim Benabid 担任科学赞助,主要项目是开发用于外骨骼控制的脑机接口。不幸的是,最初有一个良好的开端,由于 Inserm 和 CEA 在 2015 年底就首次人体试验的进行和 Hcéres 的结构评估发生重大冲突,这一努力被中断。当时 Clinatec 的董事总经理、现任 BrainTech 实验室负责人 François Berger 出于良心辞去了 Clinatec 的职务。他首先和他的团队(即现在 BrainTech Lab 的一部分)的研究人员一起被转移到 Clinatec 设施外的预制模块中。这一事件对不同研究项目的开展产生了负面影响。随后,BrainTec Lab(Inserm 和 UGA 的联合单位)再次被转移到圣马丁德埃雷 UGA 校园的两个不同地点,以及附近的医科大学 Jean Roget 大楼内。临床活动现在位于格勒诺布尔大学医院的 Palcros 神经外科部门内,由 Emmanuel Gay 教授监督。该单位负责协调分子神经外科生物库。动物研究在不同的格勒诺布尔动物设施进行:Bio B et Jean Roget(小动物)、GIN(非人类灵长类动物)、里昂兽医学院(猪模型)。该研究单位仍与 CEA Leti 保持联系,以对微纳米医疗技术进行原型设计。管理团队 BrainTech Lab 由单位负责人 François Berger 管理。 HCÉRES 命名法 SVE2_3 细胞生物学、动物发育生物学 SVE5_3 医学遗传学、药理学、医学技术 主题 建议在下一个五年期以一个团队为基础,建立一个新的组织,该团队有三个不同的研究主题:第一个主题是“大脑微结构成像”,第二个主题是“诊疗微纳米植入物”,第三个主题是“下一代医学的神经技术”。 单位工作人员
王子大道 纳尔逊 梅斯菲尔德/萨福克路 里士满阿伯利 里士满 • 斯托克萨福克路,斯托克 里士满坦普尔莫尔大道 布伦海姆 • 皇后镇 皇后镇 纳尔逊 • 果园辛迪加 波莫纳辛迪加 格伦伍德县庄园 波哈拉辛迪加 • 胡德湖 威美亚村 卡罗罗辛迪加,斯普林利 • 中央塔卡卡辛迪加 里士满,波哈拉辛迪加 • 波哈拉商业辛迪加 铁厂辛迪加 • 希望山辛迪加 亚伯塔斯曼辛迪加 • 纽黑文马拉豪辛迪加 阿尔卑斯景观有限公司 • 北海滩辛迪加 下皇后街辛迪加 苹果比 54 有限公司 苹果比菲尔德有限公司 • 哈雷路辛迪加 • 格莱斯顿路,里士满 马普阿 • 卢德谷 金湾 阿什伯顿 里士满 格雷茅斯 阿塔瓦伊,纳尔逊 塔卡卡 • 波哈拉塔卡卡 马普阿所有权和土地已经存在,我们购买了一小部分权益,从那时起就管理了开发项目,涵盖了上述第 7-10 步。 • 在 Waimea Village,我们收购、重组和再融资了濒临破产的 Waimea Village Development Company,并在里士满市中心创建了一个拥有 170 套住宅的繁荣生活方式退休村。我担任董事长 16 年。 • 除了这些主要分区外,Wadsworth & Dick Group Ltd 还担任管理顾问,并接受了独家代理,成功营销了大量分区。以下只是一些分区的样本,每个分区的大小超过 60 个部分。 • Greenmeadows Middlebank 分区 Chelsea Ave • Robinson Estate Clairmont Heights Woodstock Park Pinehill Heights Hathaway Court Kings Rise Greenwood Park Monaco (Hoult Cres) Birchwood • Walters Bluff Tasman Heights • Stoke Richmond Mapua, Nelson Richmond • Nelson (Nelson 市议会分区) Nelson
Bunzl plc 是一家专业的国际分销和服务集团,在进入截至 2024 年 12 月 31 日的年度休市期之前,今天将更新市场情况。按固定汇率计算,预计 2024 年集团收入将比 2023 年高出约 3%,按实际汇率计算,将下降 0% 至 1%。按固定汇率计算,集团收入增长预计将受到收购的推动,而全年基础收入将小幅下降。在基础收入中,预计第三季度的销量增长将在第四季度继续,尽管通货紧缩可能比之前预期的更持久。预计这将对 2024 年集团调整后营业利润产生轻微影响,主要受欧洲大陆的影响。按固定汇率计算,2024 年集团调整后营业利润将与 2023 年相比大幅增长。预计 2024 年集团营业利润率强劲,并继续略高于 2023 年的水平。展望未来,尽管更广泛的经济和地缘政治格局存在不确定性,但集团预计 2025 年收入将强劲增长,按固定汇率计算,这得益于宣布的收购和轻微的基础收入增长。预计集团营业利润率将与 2024 年保持一致,并将继续大幅高于疫情前的水平,这得益于利润率更高的收购以及良好的基础利润率增长。 2024 年 8 月,我们承诺每年拨款约 7 亿英镑,主要用于投资增值收购,并在截至 2027 年 12 月 31 日的三年内每年投资资本回报(如果需要),旨在使 Bunzl 在 2027 年底前稳步恢复到其目标杠杆率范围。除此之外,Bunzl 还展示了其收购渠道的实力,2024 年承诺支出超过 8.5 亿英镑,创下了历史新高。我们还在 8 月启动了 2.5 亿英镑的回购,其中约 2 亿英镑现已完成。此外,我们确认将在 2025 年再执行 2 亿英镑的回购,如前所述。10 月,Bunzl 完成了对 C&C 集团(“C&C”)的收购,这是一家专业的餐饮服务企业,与我们在英国现有的商业餐饮业务相得益彰。截至 2024 年 4 月,该业务创造了 2600 万英镑的收入。12 月,Bunzl 完成了对法国罗纳-阿尔卑斯地区领先的清洁和卫生产品分销商 Comodis 的收购,增强了我们在该地区的影响力。截至 2024 年 3 月,该业务创造了 2300 万欧元(约 2000 万英镑)的收入。
Schlaak,Helmut F.(主席)|德国达姆施塔特工业大学 (会议主席) Amrhein,Wolfgang |奥地利林茨约翰内斯开普勒大学 Chikhaoui,Mohamed Taha |法国格勒诺布尔-阿尔卑斯大学 Choi, Seung-Bok |纽约州立大学韩国分校 (SUNY Korea),韩国仁川 Claeyssen,Frank | CEDRAT Technologies SA,梅朗,法国 Goldasz,Janusz | BWI 北京西进工业技术中心 波兰克拉科夫 Henke, Markus |德国德累斯顿工业大学 Kanda, Takefumi |日本冈山大学 凯勒,罗兰 |博士Fritz Faulhaber GmbH & Co. KG,德国舍奈希 Keplinger,Christoph |德国斯图加特马克斯普朗克智能系统研究所 Kohl,Manfred |德国卡尔斯鲁厄理工学院 Krippner,Peter | Bürkert Werke GmbH & Co. KG,卡尔斯鲁厄,德国 Lötters,Joost | Bronkhorst High-Tech BV,Ruurlo,荷兰 Maas,Jürgen |德国柏林工业大学 Manfredi,Luigi |英国邓迪大学 Marienfeld, Peter | ContiTech Vibration Control GmbH,德国汉诺威 Monner,Hans Peter |德国航空航天中心 (DLR),德国不伦瑞克 Morishima, Keisuke |大阪大学,山冈,日本 Morita, Takeshi |日本东京大学 Müller,Bert |瑞士巴塞尔大学 Müllner,Peter |美国博伊西州立大学 Pagounis,Emmanouel | ETO MAGNETIC GmbH,德国施托卡赫 Perret,Jérôme | Haption GmbH Aachen,德国 Pertsch,Patrick | PI Ceramic GmbH,Lederhose,德国 Pott,Peter |德国斯图加特大学 Preumont,André |比利时布鲁塞尔自由大学 普莱斯,亚伦 |加拿大西安大略大学 Renaud,Pierre |斯特拉斯堡国立应用科学研究所 INSA,斯特拉斯堡,法国 Seelecke,Stefan |萨尔大学,萨尔布吕肯,德国 Spomer,Waldemar | Physik Instrumente (PI) GmbH & Co. KG,德国卡尔斯鲁厄,高崎,Masaya |日本埼玉大学 Uchino, Kenji |美国宾夕法尼亚州立大学 Ugurlu, Barkan |奥谢金大学,Çekmeköy - 土耳其伊斯坦布尔 Vander Poorten,Emmanuel |比利时鲁汶天主教大学,哈弗莱 Vergani,Giorgio | SAES Getters SpA,意大利拉伊纳泰 Wallrabe,Ulrike |德国弗莱堡大学微系统工程系 – IMTEK
二次谐波生成:半导体电介质接口的强大非破坏性表征技术 Irina Ionica a 、Dimitrios Damianos a 、Anne Kaminski-Cachopo a 、Danièle Blanc-Pélissier b 、Gerard Ghibaudo a 、Sorin Cristoloveanu a 、Lionel Bastard a 、Aude Bouchard a 、Xavier Mescot a、Martine Gri a、Ming Lei c、Brian Larzelere c 和 Guy Vitrant aa Univ。格勒诺布尔阿尔卑斯,CNRS,格勒诺布尔-INP,IMEP-LAHC,38000 格勒诺布尔,法国 b INL-UMR 5270,里昂国立应用科学学院,7 avenue Jean Capelle,69621 维勒班,法国 c FemtoMetrix,1850 East Saint Andrew Place,加利福尼亚州圣安娜 92705,美国。二次谐波产生 (SHG) 被证明是一种非常有前途的介电体-半导体界面表征技术,因为它灵敏、无损,可在晶圆处理的不同阶段直接应用于晶圆。该方法基于非线性光学效应,测量包含介电体-半导体界面处“静态”电场的信号,该信号与氧化物电荷 Q ox 和界面态密度 D it 直接相关。从 SHG 测量中提取 Q ox 和 D it 的一般方法需要 (i) 根据通过经典电学方法获得的参数进行校准和 (ii) 建模以捕捉影响 SHG 信号的光传播现象。在本文中,我们基于对如何利用 SHG 进行半导体电介质表征的最新进展的回顾来讨论这些问题。简介半导体上电介质堆栈在微纳电子、光伏 (1)、图像传感器 (2)、生物化学传感器等许多应用领域的设备中无处不在。在每种情况下,界面的电质量对设备的性能都有很大的影响。通常使用两个参数来确定这种界面的电质量:固定氧化物电荷密度 Q ox 和界面态密度 D it 。大多数时候,这些参数是通过电测量(例如电流、电容、噪声 (3))获取的,然后采用适当的提取方法并在专门制造的测试设备上实施(例如:金属氧化物半导体 - MOS 电容或晶体管)。一些其他方法可以直接在晶圆级实施,而无需任何额外的测试设备制造步骤,例如:半导体的电晕-开尔文特性 (4)、通过光电导或光致发光衰减测量进行的载流子寿命提取 (5)。除了无需任何额外步骤即可直接在晶圆上进行探测的可能性之外,选择最适合的测量方法的标准还包括灵敏度、非破坏性、区分 D it 和 Q ox 的能力、提供高空间分辨率的能力。可以满足所有这些标准的最新技术是二次谐波产生 (SHG) (6),基于非线性光学效应。