编辑委员会 主编:Mihaela ONOFREI,罗马尼亚雅西亚历山大·伊万·库扎大学 总编辑:Tudorel TOADER,罗马尼亚雅西亚历山大·伊万·库扎大学 助理编辑:Sorin Gabriel ANTON,罗马尼亚雅西亚历山大·伊万·库扎大学 Ana Maria BERCU,亚历山大·伊万·库扎 罗马尼亚雅西大学 Elena CIGU,亚历山大·伊万·库扎 罗马尼亚雅西大学 Florin OPREA,亚历山大·伊万·库扎 罗马尼亚雅西大学 Ada Iuliana POPESCU,亚历山大·伊万·库扎 罗马尼亚雅西大学 Mihaela TOFAN,亚历山大·伊万罗马尼亚雅西库扎大学 行政编辑:Dan LUPU、Alexandru Ioan Cuza 雅西大学、Bogdan PETRIŞOR、Alexandru Ioan Cuza 雅西大学,罗马尼亚 科学顾问委员会:Paolo ANDREI,意大利帕尔马大学 Gabriela-Victoria ANGHELACHE,经济学院罗马尼亚布加勒斯特研究 Stefano AZZALI,意大利帕尔马大学 Bradu ț -Vasile BOLO Ș,罗马尼亚特尔古穆列什 Petru Maior 大学 Ionel BOSTAN,Stefan cel罗马尼亚苏恰瓦 Mare 大学 Daniela CORODEANU-AGHEORGHIESEI,罗马尼亚雅西大学 Alexandru Ioan Cuza Adrian FLOREA,罗马尼亚奥拉迪亚大学 Călin Emilian HINŢEA,罗马尼亚克卢日纳波卡 Babeș-Bolyai 大学 Nicolae ISTUDOR,布加勒斯特经济研究学院,罗马尼亚 Corina LAZAR,罗马尼亚布加勒斯特国立政治研究和公共管理学院 Ani MATEI,罗马尼亚布加勒斯特国立政治研究和公共管理学院 Fabio DE MATTEIS,意大利巴里大学 Claudia Olimpia MOISA,1918 年 12 月 1 日大学罗马尼亚阿尔巴尤利亚大学 Alunica MORARIU,罗马尼亚苏恰瓦斯特凡大公大学 Alina Livia NICU,罗马尼亚克拉约瓦大学 Ruxandra Irina POPESCU,罗马尼亚布加勒斯特经济研究学院 Daniela PREITE,意大利米兰博科尼管理学院 Marius PROFIROIU,罗马尼亚布加勒斯特经济研究学院 Giovanni VERGA,意大利帕尔马大学 Georgeta VINTILA,罗马尼亚布加勒斯特经济研究学院 Aysen WOLFF,土耳其伊斯坦布尔阿雷尔大学
伊比德罗拉增加投资以支持澳大利亚的能源转型 在参议院审议澳大利亚新的气候目标之际,世界领先的绿色能源巨头之一伊比德罗拉已拨款高达 30 亿澳元的投资,以帮助实现该国的能源转型,而此前已投资的 20 亿澳元已有 20 亿澳元。伊比德罗拉董事长兼首席执行官伊格纳西奥·加兰 (Ignacio Galán) 昨天 (9 月 7 日) 在堪培拉会见了总理安东尼·阿尔巴尼斯 (Anthony Albanese) 和联邦气候变化和能源部长克里斯·鲍文 (Chris Bowen)。加兰先生概述了该公司的主要计划,包括提供新的可再生能源容量、电池存储、绿色氢项目和投资输电网络。本周,加兰先生还会见了维多利亚州州长、新南威尔士州财政部长兼能源部长以及澳大利亚投资者。这家清洁能源公司在 2020 年收购了当时澳大利亚领先的可再生能源公用事业公司 Infigen Energy,扩大了其在澳大利亚市场的地位。 Iberdrola 拥有超过 2GW 的成熟陆上风电和太阳能开发项目储备,最近还在澳大利亚建立了网络业务,并积极寻找新的机会。除此之外,该公司还在分析一系列绿色氢能投资。 在全球范围内,Iberdrola 是绿色氢能领域的领导者,在 8 个国家/地区正在推进 60 个项目,包括最近在西班牙建成的欧洲最大的工业绿色氢能工厂。Iberdrola 也是全球海上风电领域的领导者,并将寻求将其资本和经验带到澳大利亚新兴的海上风电行业。 Iberdrola 董事长兼首席执行官 Ignacio Galán 表示:“澳大利亚脱碳目标的全面批准将使联邦政策与大多数州已经表现出的雄心以及澳大利亚公司和整个社会所表现出的承诺保持一致。该国巨大的可再生能源潜力及其清晰稳定的政策框架传统为澳大利亚创造了机会,使澳大利亚能够成为能源转型的全球领先强国,并通过实现其生产绿色氢能的巨大潜力巩固其作为全球最大能源出口国之一的声誉。 “Iberdrola 也准备投资并贡献其资源和技能,以帮助澳大利亚创造更加绿色和智能的能源系统带来的新就业和经济机会。
威廉·阿尔巴诺 (William Albano)、路易丝·鲍杜夫 (Louise Balduf)、格雷厄姆·P·约翰斯顿 (Graham P. Johnston)、丹尼尔·希恩 (Daniel Sheehan)、谢恩·麦考利 (Shane McAuley)。还有肖恩·戴维 (Sean Davey)、埃里克·托马斯 (Eric Thomas) 下士、约瑟夫·A·科兰托尼 (Joseph A. Colantoni) 上士、詹姆斯·R·贾维斯三世 (James R. Jarvis III) 中士、美国陆军中尉布赖恩·约翰斯 (Brian Johns) 和克里斯·巴特勒 (Chris Butler) 上士。还有安德鲁·格拉托 (Andrew Grato) 和阿里尔·格拉托 (Arielle Grato) 中士、陆军空降部队埃里克·塞登 (Eric Seiden) 中士。还有弗兰克·弗莱明 (Frank Fleming)、马休·古德 (Mathew Goode)、美国空军少校大卫·冈萨雷斯 (David Gonsalez)、美国海军陆战队瑞安·戴维斯 (Ryan Davis)、凯文·迈克尔·瑞安 (Kevin Michael Ryan) 中校、林赛·瑞安 (Lindsey Ryan) 少校、陆军高级军士长詹姆斯·克劳利 (James Crowley)、威廉·洛帕特卡 (William Lopatka) 和一等兵伊丽莎白·V·麦卡锡 (Elizabeth V. McCarthy) - Tang。还有下士森哈克·唐 (Senghak Tang)。 PFC Hyder Alsatlawi、美国海岸警卫队 MaƩ Bonneau、美国陆军 Faryn LiƩle、美国空军 Daniel W. Luring、二级准尉 Jesse Boyd、中士 Nicole L. Jenkins、上尉 Bill Lord、中尉 FC Sarah Lord、少校 Anthony LaCourse 和 GM2 Paul J. Bergman。还有美国海军陆战队 Eric Kelly、美国空军中校 Mark Barrera、特种兵 Ryan Fallows、美国陆军二等兵 Mitchell Connolly、中士 Jeffery Kielpinsk。以及 Steven Tyler Morse、Jusn Rose、TSGT - 美国空军 Steven Freitas、海军预备役参议员 Michael Rush、空军飞行员中尉 Kevin Winslow、美国特种兵 Thomas C. Boyle, Jr.、SSGT Dane Pare、美国海军陆战队Ryan H. Mckay,美国海军陆战队下士 Timothy Shallow, Jr.,美国空军少校 Sarah E. Kelter,美国海军陆战队中士 Derek BoƟ,美国海军陆战队下士 Tyler Geary,KC Zerfoss,美国海军陆战队下士 Andrew Santos、Catherine Balduf、Patrick J. Mitchell,技术准将 Kevin O'Hara,美国空军、美国海军陆战队列兵 George Eliopoulus,美国海军 Casey D. Carbone,一等兵 John O'Neil,第 75 游骑兵团中士Peter Cannizzaro、Ryan McGrath 美国空军、美国陆军国民警卫队、一等空军兵 MaƩhew Timmons、CPO Jacob Patriarca、美国海军、少校 William Buckley III 美国陆军、下士 Alyssa Buckley 美国海军陆战队、E5 SSG Brandon Miller、高级空军兵、美国海军陆战队 PFC Anthony Votano、美国海军中尉 Joseph Gallagher、美国海军 E4 Aidan Paul Duuffy、陆军上尉 Rachel Miller、E4 SPC Brian C. Booth、美国陆军中士 James Rehill、美国陆军、James Leahy、美国海军陆战队、美国海军陆战队中士 Jonathan L. Storrs、美国陆军 Trevor LiƩle、美国海军 Patrick DeMichele、空军兵 Gregory Staffird Eimers、中士 Adam Cannizzaro、美国陆军 Sean Creavin、少尉 Samuel Belanger、美国空军。
1俄亥俄州立大学,俄亥俄州哥伦布,俄亥俄州,美国,xing.174@osu.edu 2基因半导体公司,美国弗吉尼亚州斯特林市,弗吉尼亚州斯特林,ranbir.singh@genesicsemi.com 3 sandia国家实验室,美国新罕布什尔州阿尔巴克基,美国,美国,satcitt@sandia.gov--- 5-A SIC MOSFET由基因制造。涉及静态特征和短路可持续能力。在不同的门电压下以2.2 kV的排水偏置探索它们的饱和电流。在2.2 kV和18-V门电压的排水电压下测量两种设备的短路承受时间。将短路测试结果与来自四个供应商的1.2 kV SIC MOSFET进行了比较。测试结果表明,在SC事件中,通道长度和较高电压等级的SIC MOSFET具有更长的持续时间。此外,开发了短通道设备的设备模型。所有测试均在室温下进行。简介和动机 - 中型电压宽带隙(WBG)半导体大于3 kV对于功率转换应用具有吸引力,以提高性能。尽管这些设备中的大多数仍在出现,但价格明显较低,并且很容易从基因上获得设备。需要评估这些设备的性能和可靠性,以确保将来会有大量的市场吸引力。在本文中,评估了新一代3.3-kV,5-A SIC MOSFET的基因。根据测试结果开发了香料模型。SC测试的电路图如图4。与针对相似设备的静态和动态评估的先前报告相比,在这种情况下,有两种具有不同通道长度的设计类型。结果和意义 - 第一象限I-V曲线和阈值电压如图1-2所示。在其排水量泄漏电流,闸门源泄漏电流和电容中没有明显差异。如图3所示,测量额定电压(2.2 kV)和三个不同的栅极电压下的饱和电流。最初设置了2.2-KV,18-V v g„的SCWT测量。A 1-1.TS增量。图5-6中显示了每个回合的设备故障波形和SC电流。从四个不同供应商的1.2 kV SIC MOSFET也以额定电压(0.8 kV)和18-V V GS的2/3进行测量。比较图如图7所示。与短通道设备相比,长通道设备的RDSON有1.23倍的RDSON,0.49个时间ID(SAT),18-V V g„和1.4倍SCWT。对于诱导设备故障的脉冲,短通道设备在5范围内消散了约900 MJ,而长通道设备在7 TTS内消散了799 MJ。由于两个设备的模具尺寸几乎相同,因此具有较大SC能量的短通道设备比长通道设备更早。将V GS拉到零后,这两个设备都失败。这种故障机制可以是通过设备的熔融铝穿透[2]。与1.2 kV设备相比,3.3-kV脱离显示更长的SCWT。由于末端电容没有差异,因此仅针对短通道设备执行动态评估,如图8所示。在2.4-kV DC电压和6-A I DS电流时,打开损失为850 TD,为25 kV/ps,关闭损耗为150 µJ,为53 kV/ias。用于香料建模零件,使用级别1,级别2和降压电荷模型[3](图9)。拟合结果表明,降压电荷模型更适合这种中电压功率SIC MOSFET。车身二极管特性和末端电容也被建模并在图10中显示。参考 - [1] H. Wen,J。Gong,Y。Han和J. Lai,“ 3.3 kV 5 A SIC MOSFET的表征和评估,用于固态变压器应用”,2018年亚洲能源,电力和运输电气化会议(APTICERAIGT),2018。[2] K. Han,A。Kanale,B。J。Baliga,B。Ballard,A。Morgan和D. C. Hopkins,“ 1.2KV 4H-SIC MOSFETS和JBSFETS和JBSFETS的新短路故障机制”,2018 IEEE第6次IEEE第6届宽带电源设备和应用程序(WIPDA)(WIPDA)的第6届研讨会,2018年。[3] N. Arora,“ VLSI电路模拟的MOSFET模型”,计算微电子学,1993。
急性肾脏损伤(AKI)是全球骨科创伤手术的主要并发症,尤其是在老年人中(1)。AKI与死亡率的升高(2)和医院住院时间增加有关,其影响与医疗保健资源有关,尤其是对于结果较差的低收入国家(5)。创伤后骨科手术急性肾脏损伤(PTOS-AKI)的危险因素包括高龄,现有的疾病,例如慢性肾脏疾病和冠状动脉疾病(CAD)(2),男性性别(6),低阿尔巴米纳血症和血糖控制不良(7)。手术过程中可能的可修改因素也可能影响AKI的风险,包括选择麻醉(脊髓麻醉会增加AKI的风险升高)(1)(1),使用围血性肾毒性药物和流血过多(3)。脊柱麻醉,预先存在的CAD或失血可能会通过增加围手术性低血压的可能性而导致AKI,这是许多手术中AKI公认的风险因素,尤其是如果平均动脉压(MAP)<65mmHg <65mmHg持续超过5分钟(8)。如果低血压显着,则可以发展出缺血 - 重新灌注损伤(IRI)相关的AKI的次要过程(9)。失血还通过激活辅导补偿过程为AKI提供了进一步的刺激,该补偿过程驱动了围手术期促进性反应(10,11),该反应具有良好的直接和间接的肾毒性作用(12)。这就提出了一个问题,如果有肾内保护机制有助于减轻直接和间接的微管毒性突变过程。在将围手术性AKI推向其常见的肾脏病理生理途径的许多不同的临床因素中是有价值的,即灌注不足,IRI和PROIN浮肿的过程。由于量化了这些过程对单个患者的这些过程的不同影响而引起的,已经尝试确定生物标志物理论上是否与灌注不良的过程(心型脂肪酸结合蛋白(H-FABP)(H-FABP)(H-FABP)和血管性内皮生长因子(VEGMFF)(VEGM)(MIDIM),并促进(MIDMIMMIMMINMINM),并促进细胞因子(13,14)在可检测到的AKI中表现出生物评估的意义。 这种方法已经在心脏手术相关的AKI(CS-AKI)(14)以及骨科骨折手术中生成生物标志物风险评分方面已经显示出一些希望(13)。 尽管在AKI的发病机理中可能会分别考虑浮动灌注和IRI的过程,但重要的是要注意,下灌注和IRI可能会导致次级促进性降低的管状管状损伤,这可能会导致直接的肾小管损伤,这可能会导致仅由Hypopopopoperfusion和IRI引起的直接肾小管损伤(15)。 在这种情况下,注意力集中在心脏手术中的内源性内抗炎性反应上,并没有(16)和没有(17)心肺旁路,是潜在的保护性保护性抗弹性介导的术语术受到的肾脏肾脏损伤(18),并且伴有炎症(18)造成毒性(14)受伤(14)受伤(14)。,已经尝试确定生物标志物理论上是否与灌注不良的过程(心型脂肪酸结合蛋白(H-FABP)(H-FABP)(H-FABP)和血管性内皮生长因子(VEGMFF)(VEGM)(MIDIM),并促进(MIDMIMMIMMINMINM),并促进细胞因子(13,14)在可检测到的AKI中表现出生物评估的意义。这种方法已经在心脏手术相关的AKI(CS-AKI)(14)以及骨科骨折手术中生成生物标志物风险评分方面已经显示出一些希望(13)。尽管在AKI的发病机理中可能会分别考虑浮动灌注和IRI的过程,但重要的是要注意,下灌注和IRI可能会导致次级促进性降低的管状管状损伤,这可能会导致直接的肾小管损伤,这可能会导致仅由Hypopopopoperfusion和IRI引起的直接肾小管损伤(15)。在这种情况下,注意力集中在心脏手术中的内源性内抗炎性反应上,并没有(16)和没有(17)心肺旁路,是潜在的保护性保护性抗弹性介导的术语术受到的肾脏肾脏损伤(18),并且伴有炎症(18)造成毒性(14)受伤(14)受伤(14)。
This report was produced by the ISS Working Group and the " COVID-19 vaccine surveillance system ” of the Ministry of Health Patrizio Pezzotti, Massimo Fabiani, Antonietta Filia, Alberto Mateo Urdiales, Chiara Sacco, Fortunato (Paolo) D'Ancona, Matteo Spuri, Flavia Riccardo, Antonino Bella (DMI, ISS) Francesca Menniti Ippolito, Roberto Da Cas, Marco Massari, Cristina Morciano, Stefania Spila Alegiani (CNRVF, ISS) Maria Puopolo (NEURO, ISS) Marco Tallon (DG-INF, ISS) Serena Battilomo, Valeria Proietti (DG-SISS, Ministry of Health) The COVID-19 Integrated Surveillance Group in ISS: Antonino Bella, Alberto Mateo Urdiales, Martina Del Manso, Massimo Fabiani, Matteo Spuri, Chiara Sacco, Stefano Boros, Maria Cristina Rota, Antonietta Filia, Marco Bressi, Maria Fenicia Vescio, Daniele Petrone、Marco Tallon、Corrado Di Benedetto、Alessandra Ciervo、Paola Stefanelli、Flavia Riccardo、Patrizio Pezzotti COVID-19 综合监测小组区域联系人:Antonia Petrucci(阿布鲁佐);米歇尔·拉比安卡(巴西利卡塔)安娜·多梅尼卡·米格纽利(卡拉布里亚)彼得·古德(坎帕尼亚)埃里卡·马西米利亚尼(艾米利亚-罗马涅)法比奥·巴博内 (弗留利-威尼斯朱利亚);弗朗西斯科·瓦伊罗(拉齐奥)卡米拉·斯蒂奇(利古里亚)达尼洛·塞雷达(伦巴第)露西亚·迪·弗里亚(马尔凯)弗朗西斯科·斯福扎(莫利塞)安娜玛丽亚·巴索 (Annamaria Bassot)(博尔扎诺 AP)皮尔·保罗·贝内托洛(Pier Paolo Benetollo)(特伦托 AP)基亚拉·帕斯夸里尼(Chiara Pasqualini)(皮埃蒙特);露西亚·比塞利亚(普利亚)玛丽亚·安东妮塔·帕尔马斯(撒丁岛)萨尔瓦托·斯孔多托(西西里岛) Emanuela Balocchini(托斯卡纳)安娜·托斯蒂(翁布里亚)毛罗·鲁菲尔(奥斯塔山谷)菲利波·达雷 (威尼托) 国家疫苗接种登记处 (AVN) 的地区联系人(AVN 抗 COVID-19 疫苗接种流程):卡米洛·奥迪奥 (Camillo Odio) (阿布鲁佐);米歇尔·雷西内(巴西利卡塔大区) Innocence Ruberto(卡拉布里亚) Salvatore Ascione and Massimo Bisogno (Campania);甘道夫·米塞伦迪诺、马西米利亚诺·纳瓦基亚(艾米利亚-罗马涅)贝阿特丽斯·德尔·弗拉特 (Beatrice Del Frate)、埃马努埃拉·考 (Emanuela Cau)(弗留利-威尼斯朱利亚)迭戈·巴约基,达尼洛·富斯科(拉齐奥);多梅尼科·加洛(利古里亚)玛丽亚·罗莎·马尔切蒂(伦巴第)莉亚娜·斯帕扎富莫(马尔凯)拉斐尔·马拉泰斯塔(莫利塞)安东尼奥·法诺拉(Antonio Fanolla)(博尔扎诺 AP)迭戈·康福蒂 (Diego Conforti)、卡洛·特伦蒂尼 (Carlo Trentini)(特伦托 AP)安东尼诺·鲁杰里(皮埃蒙特)康塞塔·拉达拉多 (Concetta Ladalardo)、内赫卢多夫·阿尔巴诺 (Nehludoff Albano) (普利亚大区)马可·科罗纳 (Marco Corona)、保罗·隆巴尔迪 (Paolo Lombardi)(撒丁岛)马西莫·伊阿科诺(西西里) Paolo Bruno Angori、Andrea Belardinelli(托斯卡纳);米莱娜·索尔菲蒂(翁布里亚)斯蒂法诺·菲奥拉索(奥斯塔山谷) Chiara Poma、Nadia Raccanello(威尼托)。