假单胞菌 KT2440 是一种研究较为深入的细菌,可将木质素衍生的芳香族化合物转化为生物产品。假单胞菌中先进遗传工具的开发缩短了假设检验的周转时间,并使得能够构建能够生产各种目标产品的菌株成为可能。在这里,我们评估了可诱导 CRISPR 干扰 (CRISPRi) 工具集对荧光、必需和代谢靶标的作用。结果表明,用阿拉伯糖 (8K) 诱导启动子表达的核酸酶缺陷型 Cas9 (dCas9) 在各种培养基条件下以及靶向必需基因时均受到严格调控。除了批量生长数据外,还进行了单细胞延时显微镜检查,结果显示同克隆群体中敲低率的内在异质性。在指数增长的细胞中,研究了跨基因组靶标的敲低动力学,发现诱导后普遍存在 1.75 ± 0.38 小时的静止期,其中发生 1.5 ± 0.35 次倍增后才会观察到表型反应。为了展示这套 CRISPRi 工具集的应用,β-酮己二酸(一种性能优越的尼龙单体)以 4.39 ± 0.5 g/L 的浓度和 0.76 ± 0.10 mol/mol 的产量从对香豆酸(一种可从禾本科植物中提取的羟基肉桂酸)中生产出来。这些培养指标是通过使用更高强度的 IPTG (1K) 诱导启动子在指数期早期敲低 β KA 途径中的 pcaIJ 操纵子来实现的。这使得大部分碳被分流到所需产品中,同时无需补充碳和能量来源来支持生长和维持。
后生物学,代表生物学家族的最新成员,是由于乳酸细菌(LAB)在de Man,Rogosa和Sharpe(MRS)中的发酵而产生的代谢产物,其中包括蛋白质,糖和矿物质。生物后的成分包括外多糖(EPS),短链脂肪酸(SCFA),细菌素,抗氧化剂和代谢酶。几项研究表明,生物学后具有多种特性,例如抗菌,免疫调节,抗氧化剂,抗炎,抗肥胖,抗糖尿病和抗肿瘤特性。天然多糖是指从包括藻类,植物,动物和微生物在内的生物生物中获得的多糖。多糖是分支或线性大分子,由几种主要和一些次要的单糖组成,包括葡萄糖,果糖,果糖,甘露糖,阿拉伯糖,半乳糖糖,半乳糖酸酯,半乳糖醛酸,葡萄糖糖胺,半乳糖胺或衍生物。类似于生物后,多糖也表现出抗炎,抗菌,抗肿瘤,抗病毒,免疫调节和抗氧化特性。尽管由于缺乏特定的酶,人体不能直接消化多糖,但可以通过肠道遗留细菌(包括但不限于实验室)消化它们。最近的研究表明,大量的非淀粉多糖,例如藻酸盐,富藻酸酯,壳聚糖,角叉菜胶和瓜尔胶可以降解为低分子量的寡糖寡糖,这反过来又可以为人类健康提供健康益处。这些新发现激发了我们提出基于多糖后的后生物学,也称为糖培养基及其潜在应用。我们建议可以通过益生菌发酵多糖,随后的细菌去除将提高其生产的代谢产物的安全性,包括寡糖,二糖,单糖和衍生物。这些基于多糖的后生物学可能模仿体外多糖的代谢,从而扩大了生物后的应用。诸如Akkermansia Muciniphila和其他细菌等非刺激药也可以用于糖生物生产,从而为人类健康提供了新的应用。
要进行重新组合,需要表达噬菌体重组系统的细菌菌株。噬菌体可以从其自己的启动子或异源调节启动子中表达。从其内源性噬菌体启动子中表达基因的基因赋予了紧密调控和坐标表达的优势,从而导致更高的重组频率。这是一个重要的优势,因为在许多情况下,高重组频率对于获得所需的重组至关重要。该单元的作者通常使用位于大肠杆菌染色体上的有缺陷的预言,最近将该预言的关键要素转移到了许多不同的质粒中(Thomason等,2005;另请参见评论)。在此预言系统中,噬菌体重组功能受到肉毒噬菌温度敏感的C I 857抑制剂的控制。在低温(30至34 C)下,重组基因会严重抑制,但是当细菌培养的温度转移到42 C时,它们会从P L启动子中高水平表达。在Datsenko和Wanner(2000)的质粒构建体中,重组基因位于质粒上,并从阿拉伯糖启动子表示。DATSENKO和WANNER质粒以及某些作者的质粒构建体具有DNA复制的温度敏感性。基于质粒的系统具有迁移率的优势 - 它们可以在不同的大肠杆菌菌株中转移到鼠伤寒沙门氏菌和其他革兰氏阴性细菌。但是,如果重新组合针对质量,则使用位于细菌染色体上的预言系统更容易。在诱导重组函数后,将修饰的DNA(DS)(DS)PCR产物或合成单链(SS)寡核苷酸(Oligo)引入到预防菌株中,通过电穿孔引入预防菌株中。通过选择或筛选存活电穿孔的细胞种群获得重新组件。一旦获得了所需的构建体,就可以通过另一个重组去除预言。或者,染色体上的工程等位基因可以通过P1转导将不同的宿主移动到另一个宿主中。具有温度敏感复制起源的质粒可能会因在适当温度下的生长而从重组菌株中丢失。