Tim Otty KC 被公认为国际公法、国家和外交豁免权、制裁法、欧盟和竞争法、公法和公民自由以及人权法领域的领先从业者,并主要以初级大律师的身份从事商业法业务,在商业纠纷方面拥有丰富的经验,尤其是国际层面的商业纠纷。除了在律师界工作外,Tim 目前还是英国在欧洲委员会通过法律实现民主的欧洲委员会和威尼斯委员会的代表,并担任伦敦国王学院和美国圣母大学的客座教授。他于 2006 年以最年轻的年龄获得大律师资格,从那时起,他作为英国各级法院、其他英联邦国内法院以及一系列国际法院和法庭的首席律师,拥有丰富的经验。他曾担任开曼群岛和直布罗陀司法不当行为重大宪法调查的律师。他在欧洲人权法院出庭受理了 60 多起案件,并担任联合国官员的顾问。他所代理的最重要的宪法案件包括成功挑战土耳其的死刑、拒绝给予关塔那摩湾囚犯人身保护令权利以及英联邦将合意同性恋行为定为犯罪。他在欧洲法院出庭受理了有关歧视(卡森等人诉英国)和人道主义法与人权法之间相互关系(哈桑诉英国)的重大案件,以及美洲人权委员会在该论坛上有关 LGBT 权利的重大案件(亨利和爱德华兹诉牙买加)。在国际层面,他领导代表乌克兰政府的团队,在欧洲人权法院审理乌克兰政府对俄罗斯联邦的跨国案件,该案件涉及俄罗斯 2022 年入侵乌克兰。这些程序的首次实质性听证会于 2024 年 6 月在欧洲人权法院大审判庭举行,共有 26 个国家参加。此外,他还参与了多起价值数十亿美元的投资条约仲裁,提出了国际公法、管辖权、非法性和不洁之手以及拒绝给予《能源宪章条约》规定的利益等重要问题,以及在英国和英属维尔京群岛进行的有关对国家执行仲裁裁决的诉讼。2019 年和 2020 年,他在大审判庭代表冰岛出庭,审理了一起有关司法独立和任命的案件,以及在多起针对土耳其的案件中代表申请人,这些案件与 2016 年土耳其实施紧急状态有关。2022 年和 2023 年,他在联合国任意拘留问题工作组的诉讼中代表哈萨克斯坦前总理。2022 年和 2023 年,他还在毛里求斯最高法院担任原告律师团队的一员,参与了一起最终推翻殖民时代针对 LGBT 人士的立法的案件。2024 年 10 月,他在香港终审法院审理了三起与 LGBT 权利有关的上诉案件,并担任首席律师。在国内层面,2023 年和 2024 年,他在竞争上诉法庭和上诉法院的单独诉讼中代表苹果和万事达卡,并代表外交大臣处理与俄罗斯制裁制度有关的英国制裁挑战。2022 年,他在上诉法院代表西班牙前国王,此案现已成为国家豁免方面的一个主要案件。 2022 年和 2024 年,他两次在商事法庭出庭,参与有关国家豁免和国家支持恐怖主义指控的诉讼。2019 年至 2022 年期间,他在高等法院家庭法庭、上诉法院和最高法院针对迪拜谢赫穆罕默德的诉讼中代表约旦公主哈雅殿下。由此作出的一审和上诉法院判决现已成为关于外国国家行为、习惯国际法下的政府首脑豁免权以及家庭法庭程序公正性要求的主要判决之一。
1. 固体物理学,C. Kittel,第 8 版,2012 年,John Wiley & Sons。2. 固体物理学,AJ Dekkar,第 1 版,2000 年。Macmillan India Ltd. 3. 固体电子设备,BG Streetman。第 7 版,2018 年,Pearson Education India 4. 基础固体物理学,M. Ali Omar,1993 年,Addison-Wesley。5. 固体物理学,MA Wahab,第 3 版,2020 年,Narosa Publishing House。 6. 高 TC 超导,CNR Rao 和 SV Subramanyam,世界科学出版公司,1989 年 7. 固体物理学,SO Pillai,第 6 版,2009 年,New Academic Science Ltd 8. 固体物理学,SL Kakani 和 C. Hemarajan,第 4 版,2005 年,Sultan Chand and Sons 9. 固体中的电子,Richard H. Bube,第 3 版,1992 年 Elsevier,10. 固体物理学,RK Puri VK Babbar 编,第 1 版,2017 年。S. Chand。
和语言。2. 制作结构良好、简洁的商业文件,如电子邮件、备忘录和报告。3. 在商业信函和办公室间通信中应用有效沟通原则。4. 制作有说服力、条理清晰的商业提案和正式文件
斯里文卡特斯瓦拉大学物理系将于 2023 年 8 月 9 日至 10 日举办为期两天的先进材料、设备和技术国际会议 (ICAMDT-2023)。ICAMDT-2023 涵盖先进材料、设备和技术的最新发展,这些发展将影响几乎所有科学和技术领域。会议的主要目标是汇集来自学术界、国家实验室和工业界的科学家和工程师,讨论先进材料、设备和技术的最新发展,并探索在以下领域解决新出现的问题的合作可能性:1.生物材料和生物电子学2.陶瓷、电介质和铁电材料3.无序材料4.磁性材料和自旋电子学5.发光材料和装置6.光纤通信材料7.空间应用材料8.微机电系统9.纳米材料和纳米电子学10.纳米光子学11.光电材料和器件12.聚合物和有机材料13.半导体14.传感器和其他设备15.固态离子材料和装置16.薄膜和相关技术会议将以混合模式举行。
斯里文卡特斯瓦拉大学物理系将于 2023 年 11 月 6 日至 7 日举办为期两天的先进材料、设备和技术国际会议 (ICAMDT-2023)。ICAMDT-2023 涵盖先进材料、设备和技术的最新发展,这些发展将影响几乎所有科学和技术领域。会议的主要目标是汇集来自学术界、国家实验室和工业界的科学家和工程师,讨论先进材料、设备和技术的最新发展,并探索在以下领域解决新出现的问题的合作可能性:1.生物材料和生物电子学2.陶瓷、电介质和铁电材料3.无序材料4.磁性材料和自旋电子学5.发光材料和装置6.光纤通信材料7.空间应用材料8.微机电系统9.纳米材料和纳米电子学10.纳米光子学11.光电材料和器件12.聚合物和有机材料13.半导体14.传感器和其他设备15.固态离子材料和装置16.薄膜和相关技术会议将以混合模式举行。
对比散度是一种常用的基于能量的模型训练方法,但众所周知,它在训练稳定性方面存在困难。我们提出了一种改进对比散度训练的改进方法,即仔细研究一个难以计算且经常为了方便而被忽略的梯度项。我们表明,这个梯度项在数值上是显著的,在实践中对于避免训练不稳定很重要,同时易于估计。我们进一步强调了如何使用数据增强和多尺度处理来提高模型的鲁棒性和生成质量。最后,我们通过实证评估了模型架构的稳定性,并在一系列基准测试和用例(如图像生成、OOD 检测和组合生成)上展示了改进的性能。
乳腺癌是女性中最常见的恶性肿瘤,大多数偶发地发生,没有遗传性倾向。然而,零星的乳腺癌比遗传形式的研究较少,迄今为止,几乎没有任何预测性生物标志物存在于前者。此外,尽管据报道线粒体DNA变异与乳腺癌有关,但人群中的发现并不一致。因此,我们就散发性乳腺癌患者和僧伽罗种族的健康对照(n = 60对匹配对)进行了一项案例控制研究,以表征与该疾病相关的编码区域变体并识别任何潜在的生物标志物。线粒体基因组在30对中进行了完全测序,并在其余30对中测序了选定的区域。使用了几种硅内工具来评估观察到的变体的功能意义。在患者和对照组中发现了许多变体。错误的义务变体是多态性或稀有变体。患者和健康对照组之间的患病率没有显着差异(与年龄,体重指数和绝经状态相匹配)。MT-Cyb,MT-ATP6和MT-ND2基因显示出更高的突变率。较高比例的绝经前患者带有错义和致病性变异。在基因中看到了错义变体的独特组合,这些组合主要发生在MT-ATP6和MT-CYB基因中。这种独特的组合仅在患者中发生在肥胖患者中很常见。线粒体DNA变异可能在肥胖和培育前的乳腺癌作用中起作用。分子动力学模拟表明,MT-CO3基因中的突变体,MT-ATP6基因中的T146a的突变体可能比其野生型对应物更稳定。
migdal效应[1],其中核散射在理论上诱导了原子,分子或固体中的电子激发,但从未在实验中得出结论。主要的挑战是与弹性散射相比非常小的速率,结合了将原发性米格达事件与普通弹性核削减后的二次电子激发或电离的难度。已经提出了Migdal效应来搜索子GEV暗物质,以此作为一种通过电子激发信号逃避核后坐力阈值的方法[2-16],但首先必须使用标准模型探针观察到这种效果以校准它[17-21]。在本文中,是出于与暗物质检测相关的分子migdal效应的最新发展的动机[22],我们提出了一个新概念来测量Migdal效应。低能(〜100 eV)中子束用于通过分子气中的核散射(例如碳一氧化碳(CO))诱导结合的Migdal转变,概率约为每个中子散射事件,导致紫外线的发射和可见光子的发射