1. Hendriks RW, Yuvaraj S, Kil LP。针对 B 细胞恶性肿瘤中的布鲁顿酪氨酸激酶。Nat Rev Cancer。2014;14(4):219-232 2. Pal Singh S, Dammeijer F, Hendriks RW。布鲁顿酪氨酸激酶在 B 细胞和恶性肿瘤中的作用。Mol Cancer。2018;17(1):57。 3. Preetesh J 等人。Br J Haematol。2018;183(4):578-87 4. Xu L 等人。Blood。2017;129(18):2519-2525 5. Woyach J 等人。Blood。2019;134(1):504 6. Wang H 等人。在 EHA 2023 上发表的海报;摘要编号:P1219 7. Feng X 等人在 EHA 2023 上发表的海报;摘要编号:P1239 8. Seymour JF 等人在 ASH 2023 上发表的海报;海报编号 4401 9. Parrondo R 等人在 EHA 2024 上发表的口头报告;S157 10. https://clinicaltrials.gov/study/NCT05006716 11. https://ir.beigene.com/news/beigene-s-bgb-16673-receives-us-fda-fast-track-designation-for-cll-sll/ed433e34-61fd-4d89-
分离并研究了能够分解碳氢化合物火箭功率煤油T-1的细菌。在研究过程中,从被碳氢化合物火箭燃料污染的土壤中分离出30种微生物培养物,其中选择了9种分离株,积极地将煤油T-1作为碳的唯一水域。在这些筛查分析中显示的四种营养培养基中最佳结果的菌株,其浓度为T-1煤油1%(10 g/kg)生长良好的培养物微生物的分离株:№4、8、8、14、23、5、5、18、20、20、25和Yeast№12/5。在具有T-1煤油浓度为2%(20 g/kg)和5%(50 g/kg)的培养基上的分离株在细菌培养物中表现出良好的生长。5、18、20、25和酵母12/5。通过生理和生化特征鉴定出所选的微生物:№5 - 节肢动物Sp。,№18 - calcoaceticum,№20 - №20 - sp。,№25-№25-微球杆菌Ro-Seus,№12/5- candida sp。创造了孤立微生物的培养条件。 已经确定了节肢动杆菌培养的最佳发展温度。 5为25-30°C,calcoceticetum。 18是30-35°,玫瑰花。 25为25-37°。 念珠菌的培养时间持续时间。 12/5是1天,对于其余的研究文化 - 2天。创造了孤立微生物的培养条件。已经确定了节肢动杆菌培养的最佳发展温度。5为25-30°C,calcoceticetum。18是30-35°,玫瑰花。25为25-37°。念珠菌的培养时间持续时间。12/5是1天,对于其余的研究文化 - 2天。
塑料废物在环境中的积累带来了重大的生态和健康风险。本研究评估了微生物群落降解各种塑料的有效性,包括低密度聚乙烯 (LDPE)、低线性密度聚乙烯 (LLDPE)、聚对苯二甲酸乙二醇酯 (PET) 和聚苯乙烯 (PS)。对五种微生物菌株进行了与塑料生物降解相关的酯酶和木质酶的定性酶测定。根据其成分的酶谱,组装了四种微生物群落,结合了细菌和真菌菌株,并评估了它们降解原始塑料和再生塑料的能力。结果表明,菌落 C2(枯草芽孢杆菌 RBM2、尖镰孢 RHM1 和链格孢 RHM4)和 C4(枯草芽孢杆菌 RBM2 和假单胞菌 REBP7)表现出最高的生物降解效率,尤其是在回收的 LDPE、原始 LLDPE 和回收的 PET 中实现了显著的重量损失。FTIR 分析进一步证实了生物降解,该分析揭示了处理后的塑料的化学成分和功能组的变化,表明微生物相互作用和降解。这项研究强调了微生物菌落 在解决塑料污染方面的潜力,高度强调了基于酶谱和塑料定植能力的战略菌落设计的重要性。这些有希望的结果表明,进一步优化微生物菌落可以为大规模塑料废物管理提供可行的解决方案。
。CC-BY-NC-ND 4.0 国际许可证(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2024 年 12 月 4 日发布。;https://doi.org/10.1101/2024.12.03.626601 doi:bioRxiv 预印本
在被子植物中,斯特龙酮受体是α /β水解酶dwarf14(d14),在strigolactone结合后,经历了构象变化,触发了strigolactone依赖性反应,以及strigolactones。strigolactone信号传导涉及在strigolactone结合的D14,E3-泛素li gase scf max2和转录核心代理SMXL6/7/8之间形成复合物,这些corepressors smxl6/7/8被泛素化和降级。strigolactone也破坏了D14受体的稳定性。当前模型提出D14通过SCF MAX2和蛋白酶体降解在SMXLS泛素化后发生D14降解。使用荧光和发光测定在表达与绿色荧光蛋白或荧光素酶的D14的转基因线上,我们表明,strigolactone诱导的D14降解也可能独立于SCF MAX2和/或SMXL6/7/8,通过蛋白酶体依赖性依赖性机制发生。此外,斯特龙酮水解对于触发D14或SMXL7降解不是必不可少的。还检查了突变体D14蛋白的活性,预测对斯特龙酮SIG nalling的功能是非功能的,并使用差异扫描荧光法研究了它们在体外结合Strigolactone的能力。最后,我们发现在某些条件下,D14降解的效率与SMXL7降解的效率不符。这些发现表明,与以前预期的有关D14降解的更复杂的调节机制,并提供了拟南芥信号传导动力学的新见解。
背景我们正在寻找一位才华横溢的化学家加入我们的蛋白质降解中心(CPD),该中心由慈善捐赠资助。我们的使命是进步和部署靶向蛋白质降解(TPD)研究癌症生物学并发展突破性癌症治疗方法。CPD程序跨越了三个主要研究主题:靶向嵌合体(Protac),分子胶水降解器(MGD)和启用新型E3 E3泛素连接酶。高度协作中心与癌症药物发现中心(CCDD)有关,旨在利用ICR和我们的医院合作伙伴皇家马斯登(Royal Marsden)的广泛专业知识和能力,以开发从初始概念到诊所的蛋白质降解者,包括ICR内外。这是一个高度协作的多学科团队中的化学生物学地位。候选人将用于房屋生物学和药代动力学数据以及结构信息来设计新分子,并开发和执行合成路线以将其制成实验室。候选人将发展他们在有机化学方面的现有技能,并学习或增强其在应用药物化学和化学生物学方面的知识和经验。候选人还将接受培训以使用生化和基于细胞的测定方法测试项目化合物。
출처经S.W.的许可转载Hwang等人,“单晶硅纳米膜和瞬时电子相关材料的溶出化学和生物相容性”,ACS Nano。,第1卷。8,2014,pp。5843-5851。版权所有2014美国化学学会。
摘要:本研究旨在调查电子设备使用量增加的决定因素,这导致电子垃圾 (e-waste) 增加,由于存在需要几个世纪才能降解的有害物质,这带来了严重的环境问题。电子设备的使用呈大幅上升趋势。结果,我们面临着环境中大量电子垃圾的问题。这些材料带来了严重的环境问题,因为有些材料需要数千年才能降解。传统的储能设备(如锂离子电池)是由不可生物降解的材料制成的。基于所做的研究,本文介绍了从植物材料(如纳米纤维素)和可生物降解金属(如镁 (Mg) 和锌 (Zn))开发可生物降解的储能设备。这些可生物降解的设备性能高,在受控的环境条件下易碎,对绿色电子产品来说,它们产生的电子垃圾较少。这项研究的主要关注点是设计和测试此类设备,以实现高效且可持续的储能,而不是提供与传统技术相比更环保的替代方案。全球范围内最近出现的问题都与电子垃圾造成的环境问题有关,因为电子垃圾是由大规模生产和处置电子设备产生的。
摘要:本文对与电池相关的性能降低进行了批判性分析,特别是焦点是锂离子(Li-ion)技术。在此框架内,它阐明了四种主要的机制,这些机制会随着时间的推移逐渐下降的电池性能逐渐下降:(1)固体锂的沉积; (2)被动膜的形成; (3)裂缝的发展和传播; (4)电解质内活性材料的溶解。在整个电池系统的更广泛背景下,全面研究了这些机制中的每种机制,突出了各种过程中各个过程之间的复杂相互作用。讨论强调了电池性能的退化不仅是一种线性现象,而且是多种因素的复杂相互作用,无论是统计和随机的。这种固有的复杂性提出了对电池行为的准确建模和在其操作寿命中的预测的重大挑战。通过对这些降解机制进行彻底探索,本文旨在增强对导致电池性能降低的基础过程的理解,从而为电动汽车电池技术领域的未来研究和开发工作提供了信息。这些发现还强调了需要充分捕获电池降解的多方面性质的复杂建模方法的必要性。此类模型将在本文的第二部分中讨论。钥匙词:电动,车辆,电池。但是,复杂和1.引言电动汽车(EV)的快速开发已导致对电池性能的监测和管理进行了重大研究,尤其是在估计充电状态(SOC)和评估电池降解方面。这些参数对于确保电池系统的效率,寿命和安全性至关重要。充电状态提供了有关电池剩余能力的基本信息,而降解评估有助于预测其寿命和随着时间的推移的寿命和性能。对SOC和降解的准确估计对于电池管理系统(BMS)是必不可少的,并且电动移动性和能源存储系统的更广泛成功。
摘要 背景 对免疫检查点抑制剂 (ICI) 的耐药性显著限制了肝细胞癌 (HCC) 患者免疫治疗的疗效。然而,免疫治疗耐药性的机制仍然不太清楚。我们的目的是在抗程序性细胞死亡蛋白 1 (PD-1) 治疗框架内阐明膜相关环 CH 型指 3 (MARCHF3) 在 HCC 中的作用。 方法 在对 ICI 表现出不同反应的 HCC 肿瘤的转录组谱中鉴定出 MARCHF3。在人类中,通过多重免疫组织化学评估 MARCHF3 表达与肿瘤微环境 (TME) 之间的相关性。此外,通过流式细胞术评估了肿瘤细胞中的 MARCHF3 表达和免疫细胞浸润。 结果 在对 ICI 有反应的患者的肿瘤中,MARCHF3 显著上调。HCC 细胞中 MARCHF3 表达的增加促进了树突状细胞 (DC) 成熟并刺激 CD8 + T 细胞活化,从而增强了肿瘤控制。从机制上看,我们确定 MARCHF3 是 DNA 损伤反应的关键调节因子。它通过 K48 连接的泛素化直接与聚(ADP-核糖)聚合酶 1 (PARP1) 相互作用,导致 PARP1 降解。该过程促进双链 DNA 的释放并激活 DC 中的 cCAS-STING,从而启动 DC 介导的抗原交叉呈递和 CD8 + T 细胞活化。此外,ATF4 转录调控 MARCHF3 表达。值得注意的是,PARP1 抑制剂奥拉帕尼增强了抗 PD-1 免疫疗法在皮下和原位 HCC 小鼠模型中的疗效。结论 MARCHF3 已成为 HCC TME 中免疫景观的关键调节因子,并且是 HCC 的有力预测生物标志物。将针对 DNA 损伤反应的干预措施与 ICI 相结合是一种有前途的 HCC 治疗策略。