开发新的和先进的材料,其特征是多功能但可量身定制的特性以及改善的环境兼容性是科学界面临的最大挑战之一,即满足不断发展的现代现代,更可持续的技术以及未来的突破性。朝这个方向发展,近年来已经出现了基于高渗透方法的材料设计的新概念,成为材料科学领域的热门趋势之一。这种概念的应用导致了广泛的有趣材料的发展,即所谓的高渗透材料(HEMS),具有出色的物理和化学特性,从高渗透合金(HEAS)开始,首次引入了Cantor等人的研究。1和Ye等。2在2004年。下摆由等摩尔或接近等摩尔比的多个主元素(通常为五个或更多元素)组成,它们是由高构型驱动的实体溶液的一个同质单相结构中随机分布的。在下摆中,高渗透氧化物(HEO)是非常有吸引力的纳米材料,可以通过利用大量可能的元素组合来获得惊人的特性,从而使它们有可能适合多种应用,包括能量存储,包括储能,包括K型,大型K介电材料,水分拆卸,水分析,催化,催化,热保护和绝缘。最后,我们目前研究的一些例子报告为3,4。参考文献1 B. Cantor,I.T.H。Chang,P。Knight,A.J.B。 Vincent Mater。 SCI。Chang,P。Knight,A.J.B。Vincent Mater。SCI。SCI。在本次演讲中,将介绍一般概述高渗透材料,尤其关注HEO,这不仅是其合成和表征,而且还涉及其功能性能以及实际应用。eng。A 2004,375-377,213-218。2 J.-W。 Yeh,S.-K。陈 Lin,J.-Y. gan,T.-S。 Chin,T.-T。 Shun,C.-H。 Tsau,S.-Y. Chang Adv。 eng。 mater。 2004,6,299-303。 3 B.Petrovičovà,W。Xu,M.G。 Musolino,F。Pantò,S。Patané,N。Pinna,S。Santangelo,C。TrioloAppl。 SCI。 2022,12,5965。 4 C. Triolo,S。Santangelo,B。Petrovičovà,M。G。Musolino,I。Rincón,A。Atxirika,S。Gil,Y。BelausteguiAppl。 SCI。 2023,13,721。2 J.-W。 Yeh,S.-K。陈Lin,J.-Y. gan,T.-S。 Chin,T.-T。 Shun,C.-H。 Tsau,S.-Y. Chang Adv。 eng。 mater。 2004,6,299-303。 3 B.Petrovičovà,W。Xu,M.G。 Musolino,F。Pantò,S。Patané,N。Pinna,S。Santangelo,C。TrioloAppl。 SCI。 2022,12,5965。 4 C. Triolo,S。Santangelo,B。Petrovičovà,M。G。Musolino,I。Rincón,A。Atxirika,S。Gil,Y。BelausteguiAppl。 SCI。 2023,13,721。Lin,J.-Y.gan,T.-S。 Chin,T.-T。Shun,C.-H。 Tsau,S.-Y. Chang Adv。 eng。 mater。 2004,6,299-303。 3 B.Petrovičovà,W。Xu,M.G。 Musolino,F。Pantò,S。Patané,N。Pinna,S。Santangelo,C。TrioloAppl。 SCI。 2022,12,5965。 4 C. Triolo,S。Santangelo,B。Petrovičovà,M。G。Musolino,I。Rincón,A。Atxirika,S。Gil,Y。BelausteguiAppl。 SCI。 2023,13,721。Shun,C.-H。 Tsau,S.-Y.Chang Adv。 eng。 mater。 2004,6,299-303。 3 B.Petrovičovà,W。Xu,M.G。 Musolino,F。Pantò,S。Patané,N。Pinna,S。Santangelo,C。TrioloAppl。 SCI。 2022,12,5965。 4 C. Triolo,S。Santangelo,B。Petrovičovà,M。G。Musolino,I。Rincón,A。Atxirika,S。Gil,Y。BelausteguiAppl。 SCI。 2023,13,721。Chang Adv。eng。mater。2004,6,299-303。 3 B.Petrovičovà,W。Xu,M.G。 Musolino,F。Pantò,S。Patané,N。Pinna,S。Santangelo,C。TrioloAppl。 SCI。 2022,12,5965。 4 C. Triolo,S。Santangelo,B。Petrovičovà,M。G。Musolino,I。Rincón,A。Atxirika,S。Gil,Y。BelausteguiAppl。 SCI。 2023,13,721。2004,6,299-303。3 B.Petrovičovà,W。Xu,M.G。 Musolino,F。Pantò,S。Patané,N。Pinna,S。Santangelo,C。TrioloAppl。 SCI。 2022,12,5965。 4 C. Triolo,S。Santangelo,B。Petrovičovà,M。G。Musolino,I。Rincón,A。Atxirika,S。Gil,Y。BelausteguiAppl。 SCI。 2023,13,721。3 B.Petrovičovà,W。Xu,M.G。Musolino,F。Pantò,S。Patané,N。Pinna,S。Santangelo,C。TrioloAppl。SCI。 2022,12,5965。 4 C. Triolo,S。Santangelo,B。Petrovičovà,M。G。Musolino,I。Rincón,A。Atxirika,S。Gil,Y。BelausteguiAppl。 SCI。 2023,13,721。SCI。2022,12,5965。4 C. Triolo,S。Santangelo,B。Petrovičovà,M。G。Musolino,I。Rincón,A。Atxirika,S。Gil,Y。BelausteguiAppl。SCI。 2023,13,721。SCI。2023,13,721。
引言23自2004年24日成功去除石墨烯1以来进行的二维(2D)材料的积极研究导致发现了一种新的,新兴的2D材料,这些材料由碳化物和过渡金属的硝酸盐组成,25种称为Mxenes 2。mxenes是二维材料,具有通用式M n+1 x n t x,其中m是早期过渡26金属(例如,Ti,ti,v,cr),x是碳,氮或碳二氮,T是由O,OH,F,F,27和/或Cl 2组成的表面终止组。由于其引人注目的物理,电子和化学特性,MXENES吸引了巨大的理论28和在各种应用中的实验研究兴趣,例如锂离子电池3,4,气体传感器5,氢存储29 6和热电学7。在这些研究中,将近70%专用于Ti 3 C 2 t X,这是有史以来第一个实验30合成的MXENE 8。迄今为止,它被认为是最全面研究的MXENE。31 Ti 3 C 2 T X可以选择性地从其最大相位与氢氟酸(HF)蚀刻,其中A是元素元素32通常来自元素周期表的第13和14组(对于Ti 3 C 2 T x x)8。由于蚀刻后高反应性Ti表面,33去角质Ti 3 C 2 t X通常由随机分布的表面官能团(即O,OH,F)组成,这些表面官能团统称为34表示为T x 9。然而,由于模拟混合终止表面的复杂性和计算成本,理论研究中的大部分都考虑了Bare Ti 3 C 2 10,11或均匀终止的Ti 3 C 2 T X,具有单个功能性36组4,7,12-14。58这通常被视为MXENES 15的第一代和第二代模型。早期的实验努力,例如粉末X射线衍射(XRD)8,高分辨率透射电子显微镜(TEM)8,9,16和X射线原子对38分布函数(PDF)17,用于洞悉功能组成分的分布。然而,每种方法都因其对氢的不敏感而受到阻碍,这对于理解表面终止15至关重要。40因此,使用由高质量中子总散射法支持的原子对分布函数,Wang等。15 41获得了在不同条件下合成的Ti 3 C 2 t X结构的第一个分辨率,并提出了Ti 3 C 2 T X的多层42结构模型是MXENES的下一代模型。43受Wang等人的作品的启发,几项理论研究的重点是混合功能性44个组终止的影响(O,OH,F)。Caffrey 18提出了一个经验模型,以研究混合终止的Ti 3 C 2 T x和V 2 Ct X结构的结构变化和45个电化学性能的变化,而均匀终止的46个表面的变化。根据Caffrey研究,经验模型再现了与实验数据一致的晶格参数,状态的电子密度和47个工作函数。迄今为止,关于使用簇扩展方法的2D MXENE的表面功能化的最全面的研究和48个组成是由49 Ibragimova等人进行的。19。%和10 wt。%HF。在该研究中,在标准氢电极(SHE)50条件下,最佳O:OH:F组成为50:25:25,具有相似的分布模式,这些模式不受厚度和MXENE类型的影响。51然而,文献中仍然没有调整混合表面终止的设计途径。在PDF表征中使用52个能量色散X射线光谱(EDX),Wang等。15估计多层ti 3 c 2 t x样品中的平均原子比为53 o:f,用48 wt蚀刻时为0.85和1.4。基于54个O:F比率,Wang等。 得出T X的化学计量法,等于O 0.1(OH)0.8 F 1.1和O 0.13(OH)1.04 F 0.83。 此外,55总体结晶度和排序也受HF浓度的影响。 较高的HF浓度在表面终止中产生较高的56 F组成。 直觉上,这与57个可用的f的可能性增加是一致的,可终止HF浓度较高的新鲜蚀刻的Ti表面。 因此,受Wang等人的发现的启发。基于54个O:F比率,Wang等。得出T X的化学计量法,等于O 0.1(OH)0.8 F 1.1和O 0.13(OH)1.04 F 0.83。此外,55总体结晶度和排序也受HF浓度的影响。较高的HF浓度在表面终止中产生较高的56 F组成。直觉上,这与57个可用的f的可能性增加是一致的,可终止HF浓度较高的新鲜蚀刻的Ti表面。因此,受Wang等人的发现的启发。