Agersnap,S.,Larsen,W.B.,Knudsen,S.W.,Strand,D.,Thomsen,P.F.,Hesselsøe,M。Etal。(2017)。使用淡水样品中的环境DNA对贵族,信号和狭窄的小龙虾进行监测。plos One,12(6),1 - 22。https://doi.org/10.1371/journal.pone。0179261 Baudry,T.,Mauvisseau,Q.,Goût,J.,Arqué,A.,Delaunay,C.,Smith-Ravin,J。等。(2021)。在生物多样性热点中绘制一个超级侵蚀者,这是一个基于埃德娜的成功故事。生态指标,126,107637。https://doi.org/10.1016/j.ecolind.2021.107637 Bedwell,M.E。&Goldberg,C.S。(2020)。环境DNA检测的空间和时间模式,以告知灯杆和底漆系统中的采样方案。生态与进化,10(3),1602 - 1612。https:// doi.org/10.1002/ece3.6014 Belle,C.C.,Stoeckle,B.C。&Geist,J。(2019)。水生保护中淡水环境DNA研究的分类和地理代表。水上保护:海洋和淡水生态系统,29(11),1996 - 2009年。https://doi.org/10.1002/aqc.3208 Biotope。(2020)。eTuded'Améliorationde la Connaissance sur le Poisson Gale(AnablePsoides Cryptocallus):分布,Étatde Conservation,Mesures Et推荐。https://www.observatoire-eau-martinique.fr/ documents/rapport-poisson-gale-vf.pdf Brys,R.,Halfmaerten,D.,Neyrinck,S.,Mauvisseau,Mauvisseau,Q.(2020)。可靠的EDNA检测和欧洲天气loach(Misgurnus possilis)的定量。(2009)。(2019)。鱼类生物学杂志,98(2),399 - 414。https://doi.org/10.1111/jfb.14315 Bustin,S.A.,Benes,V.,Garson,J.A. MIQE指南:最少发表定量实时PCR实验的信息。 临床化学,55(4),611 - 622。https://doi.org/10.1373/clinchem.2008。 112797 Cantera,I.,Cilleros,K.,Valentini,A.,Cerdan,A.,Dejean,T.,Iribar,A。等。 为热带流和河流中的鱼类库存优化环境DNA采样工作。 科学报告,9(1),1 - 11。https://doi.org/10.1038/S41598-019-019-39399-5 Ceballos,G.,Ehrlich,P.R.,P.R.,Barnosky,Barnosky,Barnosky,A.D. &Palmer,T.M。 (2015)。 加速现代人类引起的物种损失:进入第六次巨大灭绝。 科学进步,1(5),E1400253。 https://doi.org/10.1126/sciadv.1400253 Cowart,D.A.,Breedveld,K.G.H.,Ellis,M.J.,M.J.,Hull,J.M. &Larson,E.R。 (2018)。 环境DNA(EDNA)用于保护危险的小龙虾(Decapoda:Astacidea),通过监测入侵物种障碍和重新定位的种群。 甲壳类生物学杂志,38(3),257 - 266。https://doi.org/10.1093/jcbiol/jcbiol/ ruy007 Cristescu,M.E。 (2019)。 环境RNA可以革新生物多样性科学吗? 生态与进化的趋势,34(8),694 - 697。https:// doi。 org/10.1016/j.tree.2019.05.003 Deal Martinique,Ecovia。 &Creocean。 (2018)。 诊断 - Martinique环境环境。 https://www.martinique。鱼类生物学杂志,98(2),399 - 414。https://doi.org/10.1111/jfb.14315 Bustin,S.A.,Benes,V.,Garson,J.A.MIQE指南:最少发表定量实时PCR实验的信息。临床化学,55(4),611 - 622。https://doi.org/10.1373/clinchem.2008。112797 Cantera,I.,Cilleros,K.,Valentini,A.,Cerdan,A.,Dejean,T.,Iribar,A。等。为热带流和河流中的鱼类库存优化环境DNA采样工作。科学报告,9(1),1 - 11。https://doi.org/10.1038/S41598-019-019-39399-5 Ceballos,G.,Ehrlich,P.R.,P.R.,Barnosky,Barnosky,Barnosky,A.D.&Palmer,T.M。(2015)。加速现代人类引起的物种损失:进入第六次巨大灭绝。科学进步,1(5),E1400253。https://doi.org/10.1126/sciadv.1400253 Cowart,D.A.,Breedveld,K.G.H.,Ellis,M.J.,M.J.,Hull,J.M.&Larson,E.R。(2018)。环境DNA(EDNA)用于保护危险的小龙虾(Decapoda:Astacidea),通过监测入侵物种障碍和重新定位的种群。甲壳类生物学杂志,38(3),257 - 266。https://doi.org/10.1093/jcbiol/jcbiol/ ruy007 Cristescu,M.E。(2019)。环境RNA可以革新生物多样性科学吗?生态与进化的趋势,34(8),694 - 697。https:// doi。org/10.1016/j.tree.2019.05.003 Deal Martinique,Ecovia。&Creocean。(2018)。诊断 - Martinique环境环境。https://www.martinique。developpement-durable.gouv.fr/img/pdf/diagnostic_vf.3.pdf deiner,K。&Altermatt,F。(2014)。自然河中无脊椎动物环境DNA的运输距离。PLOS ONE,9(2),E88786。https://doi.org/10.1371/journal.pone.0088786 Dorazio,R.M。 &Erickson,R.A。 (2018)。 ednaocupancy:用于环境DNA数据的多尺度占用建模的R包。 分子生态资源,18(2),368 - 380。https://doi.org/10.1111/1755-0998.12735 Ferreira,A.R.L.,Sanches Fernandes,L.F.,L.F. &Pacheco,F.A.L。 (2017)。 使用嵌套的部分最小二乘回归评估对河流生态系统的人为影响。 总体科学https://doi.org/10.1371/journal.pone.0088786 Dorazio,R.M。&Erickson,R.A。 (2018)。ednaocupancy:用于环境DNA数据的多尺度占用建模的R包。分子生态资源,18(2),368 - 380。https://doi.org/10.1111/1755-0998.12735 Ferreira,A.R.L.,Sanches Fernandes,L.F.,L.F.&Pacheco,F.A.L。(2017)。使用嵌套的部分最小二乘回归评估对河流生态系统的人为影响。总体科学
作者:K Hasan · 2022 · 被引用 4 次 — 摘要——高级持续性威胁 (APT) 极大地改变了网络安全格局。APT 是由隐秘、持续、复杂的... 进行的
注:聚类是指系统发育分析中显示的 S . vulgaris 种群的遗传聚类关系(图 2)。显著影响以粗体表示。对于二元数据(发芽、开花、存活),采用二项分布;对于计数数据(花、叶、枝的数量),采用泊松误差分布。
选择性颈部解剖(END)被视为口服鳞状细胞癌(OSCC)治疗的标准实践,其特征是全球范围内的发病率和死亡率很高(1)。然而,对于早期OSCC患者而言,仍然很难确定,因为一些研究表明终点提高了患者的存活率,其他研究表明差异并不显着(2-4)。根据先前的评估,CT1-2N0M0 OSCC的隐匿性宫颈转移比约为20%(5)。为了在临床节点阴性OSCC患者中获得临床益处和过度治疗之间的平衡,建立了几种用于隐匿性宫颈转移诊断的预测模型。例如,Mermod等。(6)报告了一个基于CD31,Prox1检查和相关组织学参数的模型,该模型在曲线(AUC)下达到了0.89的面积,准确性为0.88。但是指示标记的免疫组织化学评分是相对的。Sinha等。(7)使用声辐射力冲动成像进行了类似的工作,这也实现了
在冬季来临之前,对军事目标、城市中心和能源基础设施进行深入而隐秘的打击。乌克兰武装部队 (AFU) 的目标是边境州和俄罗斯内陆地区的能源、物流和机场基础设施,并对托罗佩茨 (特维尔州) 的重要弹药库进行大规模袭击。
可供公众免费试用,关于人工智能、机器学习和该特定产品的文章很多。在和该特定产品中。除了 ChatGPT 获得的高度赞誉之外,还有很多关于其不可预测性的文章,正如各种记者探究其拟人化“心灵”的隐秘一样。 当程序在某些对话中似乎失去平衡时,评论员指出,这些缺陷反映了这样一个事实,即它所训练的数据来自人。它的不可预测性来自人。它的不可预测性反映了我们的不可预测性。反映了我们的不可预测性。
可供公众免费试用,关于人工智能、机器学习和该特定产品的文章很多。在和该特定产品中。除了 ChatGPT 获得的高度赞誉之外,还有很多关于其不可预测性的文章,正如各种记者探究其拟人化“心灵”的隐秘一样。 当程序在某些对话中似乎失去平衡时,评论员指出,这些缺陷反映了这样一个事实,即它所训练的数据来自人。它的不可预测性来自人。它的不可预测性反映了我们的不可预测性。反映了我们的不可预测性。
欺骗在信息不完全的战略互动中起着至关重要的作用。受安全应用的启发,我们研究了一类具有单边不完全信息的双人回合制确定性博弈,其中玩家 1(P1)的目的是阻止玩家 2(P2)达到一组目标状态。除了行动之外,P1 还可以放置两种欺骗资源:“陷阱”和“假目标”,以误导 P2 有关博弈的转变动态和收益。陷阱通过使陷阱状态看起来正常来“隐藏真实”,而假目标通过将非目标状态宣传为目标来“揭示虚构”。我们感兴趣的是联合合成利用 P2 错误信息的 P1 的最佳诱饵放置和欺骗性防御策略。我们在图模型上引入了一个新颖的超博弈和两个解决方案概念:隐秘欺骗必胜和隐秘欺骗几乎必胜。这些确定了 P1 可以在有限步内或以 1 的概率阻止 P2 到达目标的状态,并且 P2 不会意识到自己被欺骗了。因此,确定最佳诱饵位置相当于最大化 P1 的欺骗获胜区域的大小。考虑到探索所有诱饵分配的组合复杂性,我们利用组合合成概念来表明诱饵放置的目标函数是单调的、非减的,并且在某些情况下是亚模或超模的。这导致了一个诱饵放置的贪婪算法,当目标函数是亚模或超模时实现 (1 − 1 / e ) 近似。提出的超博弈模型和解决方案概念有助于理解各种安全应用中的最佳欺骗资源分配和欺骗策略。
FREMM 是法国海军革新的旗舰计划,如今已成为法国水面舰队的骨干力量。FREMM 是一种隐秘、多功能、耐用且灵活的船舶。它们的主要任务是:控制海上作战区、水面和海底,支持和协助投射行动,以及使用海军巡航导弹在陆地深度进行精确打击。他们还能够实施 Caïman Marine (NH90),这是一种多用途舰载直升机,配备了特别有效的反潜作战能力。FREMM-Caïman 级潜艇代表着法国海军反潜战 (ASM) 领域能力的飞跃,法国海军的 ASM 能力得到了全世界的认可。