1.军用雷达:作战系统主要视频传感器 根据扫描控制方式不同,雷达站可分为机械扫描雷达、电子扫描雷达、频率扫描雷达、相控阵雷达(相控阵雷达)和合成孔径雷达(特别行政区)。雷达作为现代战争作战系统的主要视频传感器,负责对目标进行全天候精确侦察和实时监控;探测和跟踪可能对军事基础设施造成严重损害的武器,例如弹道导弹和巡航导弹;各种隐藏目标的检测和识别;确定失败的结果并识别目标、导弹制导和武器火力控制。2.世界军用雷达发展趋势:技术多元化、市场稳定、产业集中 雷达技术正处于发展中期阶段。整个中间阶段是基于相控阵雷达、合成孔径雷达和脉冲多普勒雷达三个主要系统的起源、发展、完善、集成和智能化。雷达的发展包括三个方向——载体和系统的多样化以及宽频率范围(其扩展)。关于载体(安装地点),随着雷达技术向小型化、集成化方向发展,雷达的使用不再局限于地面、机载和舰载载体,而是越来越多地应用于无人机和卫星;说到波段,随着新波段(如毫米波雷达)的发现,雷达的波长不断扩大。纵观整个雷达系统,传统的脉冲多普勒雷达(PD - Pulse-Doppler)机械扫描模式正逐渐淡出背景,取而代之的是相控电子扫描阵列雷达和合成孔径雷达(SAR)。将成为主要发展方向。雷达系统最终将统一为一个网络,其特征还包括:多功能集成、数字化和分布式。短期内,雷达发展的重点将是天线技术、成像技术和射程扩展,即相控阵雷达、SA雷达和毫米波雷达。
微纳器件与技术研究是信息科学与生命科学交叉领域的重要前沿,在神经科学和医学应用领域具有重要的战略意义和良好的应用前景(Liu et al.,2020)。随着微纳加工技术的快速进步,创新的智能化、微型化、集成化器件不断涌现,在检测和调控方面具有独特的优势。值得注意的是,将微纳器件与神经科学和临床医学相结合,可以解决科学前沿问题并培育新的研究热点。癫痫是一种主要的神经系统疾病,影响着全球超过六千万人,严重影响他们的健康和生活质量(Bernhardt et al.,2019)。研究相关神经回路内神经活动的变化对阐明癫痫的发病机制和治疗方法至关重要。可植入微电极阵列能够高质量地记录信号和解码神经信息,在脑机接口方面具有巨大的应用潜力(Wang 等人,2024 年)。Han 等人设计并制造了一种可植入微电极阵列,专门用于癫痫大鼠基底神经节纹状体区域的电生理信号检测和分析。对癫痫发作期间纹状体的电生理数据的分析为了解颞叶癫痫发作初期和潜伏期期间纹状体神经活动的动态过程提供了宝贵的见解。这一理解有助于揭示癫痫的神经机制,同时促进相关治疗方法的进步。疼痛是一种情绪和不愉快的感官体验,会对生活和工作的各个方面产生重大的生理和心理影响。纳米技术的最新进展为利用各种纳米材料和靶向表面的创新止痛策略铺平了道路
简介 鉴于对满足射频系统要求的需求日益增加,作为关键组件的循环器已成为研究的主题。传统循环器通常基于采用带状线或微带技术设计的 Y 型结形状。带状线循环器易于集成且损耗低。这种循环器拓扑结构可以通过同轴连接器连接,采用 Drop-in 技术实现或内置于表面贴装器件 (SMD)。尽管成本较高,但同轴循环器具有比其他产品更高的 EMC 屏蔽和功率处理能力。此外,Drop-in 设备处理的功率较少,并且没有 EMC 屏蔽。最后,SMD 循环器的功率处理能力低于同轴循环器,但 EMC 屏蔽比 Drop-in 更好。面对日益增长的小型化、集成化和降低成本的需求,LTCC(低温共烧陶瓷)技术是应对这些挑战的有希望的候选技术。LTCC 技术是一种通过多层结构封装集成电路的技术。它由堆叠胶带组成,可防止结点出现气隙,并降低高功率空间应用的多重击穿风险。在过去的几年中,许多已发表的研究都集中在 LTCC 循环器的设计上 [1]-[2]。然而,它们大多数都是理论上的,只有少数专注于工业用途 [3]。因此,Exens-Solutions 与 CNES、Thales TRT 和 IMT Atlantique 合作,提出了 LTCC 技术来开发用于保护有源天线的 K 波段循环器。该循环器由 Exens-Solutions 根据与 CNES 商定的规格设计。IMT Atlantique 负责循环器的制造过程。铁氧体和电介质材料带由 Thales TRT 开发。因此,本文分为四个部分。第一部分介绍 LTCC 循环器规格并详细介绍材料特性。第二部分描述了建立设计规则的试运行。第三部分讨论了 LTCC 循环器的设计步骤和模拟。制造步骤和测量结果在最后一节中报告。LTCC 环行器规格初步提出的拓扑结构采用带状线拓扑结构来设计封装在封装中的 LTCC 环行器。这种拓扑结构的优点是可以缩小环行器体积并避免金属路径受到任何损坏。如图 1 所示,在 LTCC 结构中添加了信号和接地通孔,以确保其与 SMD 表面的互连。
摘要:复杂技术系统中的控制设计和功能分配主要由技术驱动,从而提高了自动化程度。技术开发中很少考虑人或用户的观点。相关态度似乎是提高自动化程度将减少人为错误的发生,从而确保更安全的设计和操作。然而,提高自动化水平可能会降低操作员的态势感知能力。船舶动态定位 (DP) 系统的设计也是如此。事故统计数据显示,某些 DP 操作中的碰撞频率高于验收标准,并且技术和人为故障的结合是几乎所有事故的主要原因。本文强调了在 DP 系统的设计和操作中考虑操作员的作用和人的可靠性的重要性。本文介绍了 DP 系统的功能模型,并讨论了当前的控制功能分配及其对操作员的态势感知和性能的影响。本文最后提出了有关控制功能分配和操作风险可视化的建议,以提高操作员的绩效和可靠性。关键词:人为可靠性、自动化、动态定位 (DP)、控制功能分配、态势感知。1.简介 复杂技术的控制设计和功能分配主要由技术驱动(这意味着技术的能力是其发展的核心),从而提高了系统的自动化程度。自动化一词有几种定义。本文采用了 Sheridan 的定义 [1]:“自动化是指环境变量感知(通过人工传感器)、数据处理和决策(通过计算机)以及机械动作(通过电机或可以对环境施加力或向环境传递信息的装置)的机械化和集成化”。本文使用的术语“自动化”表示机器执行以前由人执行的功能 [2]。在先进技术系统的设计阶段,很少采用人或用户的观点 [3]。相关态度似乎是,更多的自动化将减少人为错误的发生,从而确保更安全的设计和操作 [4]。然而,自动化水平的提高可能会付出代价。动态定位 (DP) 系统是一种复杂而先进的技术。国际海事组织 (IMO) 将 DP 船定义为仅依靠推进器就能保持位置和航向并沿着预定航线缓慢行驶的船舶。DP 系统包括实现位置保持所需的所有系统,包括 DP 计算机控制系统 (DPCCS)、推进器系统和电力系统 [5]。DP 船依靠计算机系统解释来自参考系统、风和运动传感器的信号,以保持位置和航向或遵循预设航线。保持位置或遵循预设航线是通过调整船舶推进器的方向和力量来实现的。DP 用于各种操作。在海上石油和天然气行业中,它可用于卸载、钻井、潜水、海底干预、地震和施工作业 [6]。IMO [5] 定义了三个 DP 等级。分类的基础是最坏情况的单一故障模式。
验证化、数字化、集成化、垂直化——这听起来并不是特别诗意,但它反映了陆军2020论坛全体会议和小组讨论中讨论的国防工业的主要流程。对于前两个,一切或多或少都是显而易见的,至少在目标设定方面是这样。一如既往,在制定实现宏伟目标的方法的阶段就会出现疑问和问题。它们在多元化项目中尤其模糊。在俄罗斯联邦政府副主席尤里·鲍里索夫主持的全体会议上“DIC 和国家项目。战略重点和主要目标”,政府的主要战术决策是在基于国家项目的多元化战略框架内宣布的。尤里·鲍里索夫特别指出:“这是一项共同任务——为国内生产商、国防工业企业和整个国内工业清理市场。这是一项值得完成的任务。作为一名受过训练的数学家,我记得“必要和充分”。这是必要条件,但充分条件是您能够借助这些偏好创建有竞争力的产品并占据您所申请的利基市场。官员的任务是创造客观条件,你的任务是利用这些条件,实现你为自己设定的目标。”这种为以前主要在国家国防秩序范式中工作的企业实施国家项目的方法听起来非常有前途。这对于需要确保其多元化产品销售的国内国防工业生产商来说是鼓舞人心的,同时对于商界和一些潜在消费者来说也是令人震惊的。在没有竞争的情况下,很难创造出有竞争力的产品。关于数字化,存在也不可能存在任何分歧。这个过程是不可避免且必要的,包括为了确保任何行业的制成品的竞争力。然而,多年来在该主题框架内举行的会议和讨论一直在反映同样的问题。每个部门、公司和控股公司都怀着先驱者的热情,通过专有的接口和软件解决方案提出了几乎自己的数据处理方法。通常情况下,两年前创建的产品今天已经完全过时,并且不适合升级、数据传输到另一个系统或集成。在每种具体情况下减去时间、金钱、效率、生产力。也就是说,数字化似乎存在,但评估其实施结果的质量和有效性的标准尚未定义。一体化进程是一个明显的趋势,其中特别包括根据地域和行业特点创建集群和科技园区。垂直整合是近年来的趋势。在危机和制裁战争的情况下,这一战略有助于个体经济参与者的生存,他们在握有拳头的情况下肯定会感到受到更多保护。然而,这里也存在一个隐藏的威胁。这个过程的结果可能是丧失主动性、创造力和自我反省。正如心理学家所说,在等级结构的垂直性加强的情况下,内部控制点和外部控制点之间的平衡可能会被破坏。当外部控制点显着占上风时,高层管理者可以这样反思:“我管理的企业今年没有盈利,是因为企业产能利用率不足。我无法控制这件事。”内部控制点则是相反的情况:“我犯了管理错误,做出了错误的决定,我可以而且应该纠正它。”严格来说,这两种类型的性能反应必须保持平衡。否则,明确关注金字塔顶部的大任务而模糊其底部的轮廓 - 这可能会成为“控制焦点”。