粮食作物是指为生产适合食用的食品成分而种植的植物(Aly & Basik,2023),而根据第 201 条法律, 2012 年第 18 号关于食品的法律规定,食品成分是指来自生物资源和水的任何东西,无论是作为食品还是饮料。食物的主要功能是满足人体的能量和营养需求,因此食物成为社会的基本需求。粮食需求将始终随着人口的增长而增加。以印度尼西亚为例,预计 2050 年人口将达到 3.28 亿,因此全国粮食需求量估计为 4820 万吨,比 2010 年增加 145%(Ritung,2010 年)。如果印度尼西亚想要实现粮食自给自足,那么必须通过集约化生产来满足国内粮食需求,提高收获指数和作物生产力(Borlaug & Dowswell (2003)),但增加国内粮食产量不能损害环境,这可以通过采用可持续集约农业方法(可持续集约农业)来实现(Beltran - Pena et al., 2020)。实施可持续集约农业概念成功的关键之一是利用植物育种活动中的优良品种(Pretty et al., 2018)
埃尔埃希多的经济以集约农业(温室)为基础,围绕该农业,已经创建了丰富的辅助产业,用于园艺产品的国内和国际商业化。因此,西红柿、辣椒、西葫芦、豆类等的生产是该市经济的引擎,其成功在于在各个层面进行控制:创造种子和消费模式、监测生长和产品专业化以满足不同市场的需求,以及创建国际营销网络以确保产品的定位。
摘要 静水生态系统固碳、氮、磷的速率可告知全球碳预算和水体富营养化修复。本文我们估算了美国密苏里州 34 个湖泊沉积物中的碳、氮、磷埋藏量,并将其与其他农业区以及全球估计值进行了比较。不同研究区域的平均沉积物积累速率相差几个数量级,其中最大值(平均 6 cm yr − 1 )出现在被集约农业包围的蓄水系统中。速率随着排水率的增加而增加,随着集水区其他地表水(如农场池塘)的丰富程度而降低。不同研究区域的平均有机碳埋藏量相差一个数量级(平均 150 – 2100 gm − 2 yr − 1 ),差异与排水率和水体富营养化有关。有机碳埋藏量与氮和磷的埋藏速率密切相关。与多种全球数据的比较表明,美国中西部许多蓄水池的极高生物地球化学埋藏率可能是由于农业种植系统、景观配置和土壤特征的细节造成的。