哥本哈根,丹麦,2025年2月25日 - 巴伐利亚北欧A/S(OMX:Bava)今天宣布与生物E. E. Limited(BE)建立战略合作伙伴关系,以扩大在低层和中等基础国家(LMIC)国家的巴伐利亚北欧北欧Chikungunya疫苗。最初,两家公司已签订了一项合同制造协议,以允许扩大能力,以使未来的LMIC国家供应。本协议包括Chikungunya疫苗的当前药物制造过程的技术转移,并选择在以后转移药物的过程。巴伐利亚北欧人保留了自己的制造能力,用于西方市场即将进行疫苗的商业化。巴伐利亚北欧人继续探索与其通过许可和分销合作伙伴为美国和欧洲以外的市场提供全球访问其基孔肯雅亚疫苗的策略一致的机会。美国疫苗最近和首次批准是12岁以下的第一种chikungunya疫苗,以及欧洲药品局的人类使用药品委员会的积极意见,证明了将监管机构批准扩大到这些市场之外的可行性。“我们很高兴地宣布我们的首次合作,以扩大对奇康古尼亚疫苗的全球访问权限,以及我们与生物E的第一家合作伙伴关系,他们在提供疫苗方面具有扎实的专业知识和全面的经验,以改善全球公共卫生,” Bavarian Nordic的总裁兼首席执行官Paul Chaplin说。由于VLP不含病毒遗传物质,因此疫苗无法感染细胞,再现或引起疾病。“扩大供应是我们解决对解决方案越来越多的解决方案需求的能力的先决条件。 Biological E. Limited董事总经理Mahima Datla女士说:“我们很高兴与巴伐利亚北欧合作,以帮助扩大其在低收入和中等收入国家的Chikungunya疫苗的可用性。我们制造业和成功提供全球疫苗接种的业绩的规模与巴伐利亚北欧协同保持一致,我们致力于利用我们的先进和高效的制造技术来满足地方性地区的健康需求。”关于CHIKV VLP疫苗CHIKV VLP是一种辅助VLP重组蛋白疫苗,用于预防12岁及以上的个体中的Chikungunya病毒(CHIKV)虽然Chikv VLP疫苗的作用机理仍需要进一步表征,但人们认为该疫苗可以通过诱导中和抗体来诱导CHIKV感染的保护,从而导致对某些CHIKV蛋白的中和抗体导致中和实时病毒的中和化。添加佐剂以增加疫苗介导的免疫反应的大小。在2025年2月,美国食品药品监督管理局(FDA)批准了Vimkunya™(Chikv VLP)为12岁以下的第一种Chikungunya疫苗。批准是基于两个3期临床试验的结果,该试验招募了3500多名12岁及以上的健康个体。研究符合其主要终点,结果表明,疫苗接种后的21天,该疫苗在多达97.8%的疫苗接种个体中诱导中和抗体,并且表现出一种快速的免疫反应,开始在一种
*OEM(原始设备制造商)是汽车制造商。第1层是汽车制造商的主要供应商。
汽车零件中的裂纹检测确保车辆安全性,可靠性和耐用性。传统的裂纹检测方法在很大程度上依赖于手动检查或非破坏性测试(NDT),这可能无法有效地识别小型,表面级别或隐藏的裂纹。随着人工智能(AI),机器学习(ML),计算机视觉(CV),图像处理和光检测传感器技术的快速进步,智能裂纹检测系统(SCDS)正在作为对此问题的有效,自动化的解决方案。本文回顾了应用于汽车零件的智能裂纹检测系统的当前方法,技术,挑战和未来方向,重点是实时监控,基于AI的裂纹分类以及与IOT启用的诊断系统集成。
cermet是由陶瓷加固和金属基质组成的复合材料。激光粉床融合(L-PBF)是一种添加剂制造(AM)技术。目前的论文介绍了使用WC-17CO粉末L-PBF对CERMET零件的可行性研究。结果表明,L-PBF过程的参数优化允许生产实心WC-17CO部分。结构分析显示出明显的孔隙率(1.41%)和较小的样品中存在小规模的裂纹。通过髋关节(热等位压)进行后处理,显着改善了制造零件的结构。孔隙率变得非常低(0.01%),XRD相分析显示易碎的W 2 C相位。磨料磨损和硬度测试表明,加上制造零件的性能与粉末烧结产生的参考零件相当。该研究成功证明了制造耐磨损的Cermet零件的可能性
增材制造在航空航天、医疗植入等领域有着很好的应用前景,但成型件表面质量差,如果不进行后处理无法满足高服务化的要求,抛光加工是高性能金属增材制造技术链中的关键环节。本文总结了其阶梯效应、成型表面粗糙度高等特点。近年来,增材制造技术又称3D打印以其在快速成型特别是复杂金属零件制造方面的独特优势受到航空企业的高度重视。但由于3D打印采用逐层生长的过程,构建的零件往往表面粗糙度较差,如果不进行后处理则不适合实际使用。基于此基础,增材制造对金属零件抛光领域的研究主要集中在电化学、激光、磨料流抛光技术等方面。本文针对增材制造过程中的各种制造工艺、金属粉末材料种类以及样品的各种结构(如多孔结构、高深宽流道等)对上述领域的研究进展进行了综述,并总结了增材制造金属零件抛光工艺中表面粗糙度、材料去除、表面残余应力、轮廓精度保持性等技术指标的研究成果,最后对3D打印金属零件抛光技术未来的发展进行了展望。
摘要 增材制造 (AM) 是一种成熟的制造技术,它允许更大的设计自由度。在现有的七种 AM 工艺中,由于每种制造工艺的物理特性不同,我们观察到打印部件中存在各种缺陷。如果没有清晰的几何-工艺-缺陷深度相互作用的概述,这种各种各样的缺陷会使设计步骤变得复杂。这些缺陷可能是基于工艺或机器的,其分类通常会引发方法和术语问题。本文建议使用基于工艺的方法回顾 AM 一般部件缺陷。本文的目的是为设计师提供一种分类,通过考虑所选工艺,通过评估影响最终部件的不同缺陷,让他们能够在部件设计中做出选择。对于 ISO/ASTM 52900 中定义的每个工艺类别,都会审查零件的主要属性和缺陷,并将其分为四类:几何形状和尺寸、表面质量、微观结构和机械性能。本审查特别关注影响缺陷和属性的工艺参数,以便设计师根据工艺或零件的预期要求做出相关选择。
在用于金属增材制造的激光束直接能量沉积 (DED-LB/M) 领域,从监测数据和降阶模型实施部件鉴定策略目前还处于较低成熟度。在本文中,提出了一种方法和一套新颖的数据分析工具,旨在联合分析多模态数据:工艺参数、同轴热成像和通过计算机断层扫描获得的零件质量。为了演示所提出的方法,构建了一组具有不同工艺参数(功率、工艺速度)和路径规划策略的不锈钢试样。对数据集进行了探索性数据分析和特征工程:工艺指标、热和几何监测特征与空间分辨缺陷(主要是裂纹)以及从检查阶段获得的整体零件质量相关,为进一步实施现场工艺监控作为工艺优化和鉴定的可靠工具铺平了道路。
陆军部(DA)是美国国防部下属三个军事部门之一。作为联邦政府机构,它负责组织和领导美国陆军。陆军部长有权管理其行动并制定规章制度,但这要受到法律和国防部长及总统指示的限制。陆军部 (DA) 是美国国防部下属三个军事机构之一。是联邦政府负责组织和领导美国陆军的机构。司法部长有权对行动和编辑条例进行修改,但其权限和国防部长和总统的指示是有限的。注意:所提供的文本已被修改,以反映释义说明,同时保持原始含义和上下文。
•必须仅由合格的实验室人员进行测定。•在运行测定和/或样品制备的任何阶段,都戴上无粉末手套。在更改工作区域或怀疑它们被污染时更换手套。•将所有生物材料视为可能生化的所有生物材料,包括所有田间样品。•避免长时间暴露于冻干反应混合物中,以导致光和水分。•使用无核酸酶实验室塑料(例如,移液器,移液器尖端,反应小瓶)。•避免样品和试剂的交叉污染,请使用预防剂的移液管。•严格遵守测试协议将导致获得最佳结果。•物理分离DNA/RNA提取,PCR设置(工作区域2)和PCR扩增的工作场所。(工作区域3),以最大程度地降低承担污染的风险。•使用PCR引擎盖进行所有移动步骤。作为现成的冻干混合物提供套件,不需要用于试剂设置的专用工作区域(工作区域1)。•切勿将任何材料从工作区域3移至工作区域2或工作区2和3到工作区域1。•测试后,具有漂白剂或替代DNA去耐药和紫外线(可选)的替代PCR实验室。