3D 高程计划 (3DEP;参见侧边栏) 由美国地质调查局 (USGS) 与联邦、州、部落、美国领土和地方机构合作管理,以获得质量等级 2 或更高的一致激光雷达覆盖(表 1),满足国家和犹他州的诸多需求。图 1 显示了犹他州可用和正在进行的 3DEP 基线激光雷达数据的状态。3DEP 基线激光雷达数据包括质量等级 2 或更高、1 米或更好的数字高程模型和激光雷达点云,并且必须满足激光雷达基础规范 1.2 版(https://www.usgs.gov/3dep/lidarspec)或更新的要求。国家增强高程评估(Dewberry,2012 年)确定了用户需求,并保守估计激光雷达数据的可用性每年将为该州带来至少 870 万美元的新收益。表 2 显示了犹他州使用 3D 高程数据的十大企业,这些企业基于 3DEP 的年度保守效益估算。
关键词:移动激光雷达,图像,交通标志,胶囊卷积网络,高阶胶囊特征 摘要:本文提出了一种从移动激光雷达数据和数字图像中检测和识别交通标志的方法,用于智能交通相关应用。交通标志检测和识别方法包括两个步骤:首先从移动激光雷达数据中提取交通标志兴趣区域。接下来,通过卷积胶囊网络模型从多传感器移动激光雷达系统同时采集的数字图像中识别交通标志。实验结果表明,所提出的方法在检测三维点云中的交通标志和识别二维图像上的交通标志方面都获得了有希望、可靠和高性能。
*(sevcan.cakan@outlook.com)摘要 - 在当代技术进步时代,将生成人工智能(AI)与雷达系统融为一体,已成为一种开创性的方法,以提高雷达数据的质量和清晰度。这种融合为数据准确性和解释的重大改善铺平了道路,并扩大了雷达技术在各个行业中的潜在应用;包括国防,气象,航空和自动驾驶汽车。生成的AI算法通过其从广泛的数据集中学习并生成高分辨率雷达图像的能力,彻底改变了雷达数据的处理和分析。本文对应用于雷达系统的当前最新生成的AI技术进行了全面调查,突出了关键的方法论,例如深度学习模型和神经网络,这些方法在实现这些进步方面具有重要作用。此外,它探讨了集成过程中面临的挑战,包括数据隐私问题,计算需求以及能够处理现实世界可变性的强大模型的需求。通过对最近的案例研究和实验结果的详细分析,这项调查强调了生成AI对增强雷达数据质量和清晰度的变革性影响,从而提供了对未来方向和现场潜在突破的见解。关键字 - 雷达,gan,vae,sar,sar,图像融合,信号产生
我正在提供我们如何达到这一点的历史,尤其是在FAA雷达数据探路者计划以及《 UAS替代法》对我们州机构的重要性上。众议院法案1038强调了北达科他州在无人机集成到空域并保护我们的国家安全方面的榜样。本法案的第1节和第2节是密不可分的。一方面,我们无法通过联邦雷达数据飞地(Federal Radar Data Enclave)获得高度安全的数据,同时允许州机构通过操作具有国家安全脆弱性的中国无人机冒着不遵守联邦法规的风险。必须同时解决这两个问题,这是做到这一点的独特机会。执行董事伍兹(Woods)和执行董事罗斯勒(Roesler)很快就会深入研究法案的细节。
雷达在恶劣天气下的稳健性和提供动态信息的能力使其成为高级驾驶辅助系统 (ADAS) 中摄像头和激光雷达的宝贵补充 [1]。尽管用于 RGB 图像和激光雷达点云 (PC) 的语义分割深度学习方法已经很成熟,但它们在雷达中的应用仍未得到充分探索,尤其是包含额外海拔信息的 4D 雷达数据 [2] [3] [4] [5]。本文通过提出一种直接在距离-方位角-海拔-多普勒 (RAED) 张量上执行语义分割的方法来解决这一研究空白。此外,还引入了一种新颖的自动标记流程来在 RaDelft 数据集中生成逐点多类标签,从而实现使用雷达数据的联合检测和分类。
人们普遍认为,保护森林地区可以大大有助于缓解全球气候变化。为此,联合国气候变化框架公约 (UNFCCC) 等国际机构制定了一项减少二氧化碳排放 (REDD) 的合作计划,以更新温室气体排放清单。然而,研究表明,准确估计森林的碳储量仍然存在不确定性,尤其是使用光学遥感。因此,本研究旨在确定机载 LiDAR 数据或 VHR GeoEye 卫星图像中的哪一个来源可以为尼泊尔奇特旺亚热带森林的生物量/碳估算提供更准确的信息。非常高分辨率的 GeoEye 卫星图像仅提供二维信息,而 LiDAR 数据提供三维信息。在本研究的方法中,LiDAR 数据需要更多分析,因为来自传感器的原始信息是在点云中获取的。然后,从点云中得出数字表面模型 (DSM) 和数字地形模型 (DTM)。树冠高度模型 (CHM),即树木的高度,是通过 DSM 和 DTM 之间的差异计算得出的。将从 LiDAR 数据得出的树木高度与实地测量的树木高度进行比较。使用面向对象分析 (OOA) 技术对 LiDAR CHM 和 GeoEye 图像进行分割,以删除
土地覆盖类别包括:树冠、草地和灌木(包括农田)、建筑物、不透水层(街道、车道和停车场)、水和裸土。主要土地分类是使用 eCognition Developer 8.0 版中提供的基于对象的图像分析 (OBIA) 技术进行的。该项目使用的辅助软件包括 ArcGIS 9.3.1 版和 ERDAS Imagine 2010 版。使用 Python 2.5 版脚本语言编写了其他自定义例程,以支持所需的处理。圣保罗市提供了 Shapefile 信息,以帮助识别街道、建筑物、道路和高速公路以及水景。实施该项目遵循了以下主要步骤:• 使用 ERDAS Imagine 中的减法分辨率对 QuickBird 影像进行全色锐化。• 利用可用的 RPC 文件和 30 米 DEM 层对 QuickBird 影像进行地理配准。• 对激光雷达数据进行地理配准以匹配 QuickBird 影像。• 使用自定义 Python 脚本将地理配准影像划分为 750 x 1000 米的图块,重叠度为 10%,以便进一步处理。此步骤创建了 180 个单独的图块。• 包含道路信息的街道图层在 ArcGIS 中缓冲一米,以创建多边形形状文件,随后在 eCognition 中使用。• 开发了三套规则来处理城市的以下子部分:o 西部小部分,包括六月的 QuickBird 和激光雷达数据。o 城市东侧的 1,500 米带,有 5 月份的 QuickBird 影像,但没有激光雷达数据。o 城市其余大部分区域有 5 月份的 QuickBird 和激光雷达数据。• 3 个规则集中的每一个都使用类似的过程创建: o 检查影像以找到代表性图块。o 创建支持性影像层,例如归一化差异植被指数。(NDVI) 和 Lee 的 Sigma 边缘提取有助于提高分类效率。o 从 Shapefile 生成表示道路和水特征的图像对象,并按此进行分类。o 如果有激光雷达数据,则首先将图像分割成高特征和短特征。o 利用 eCognition 中提供的算法对图像的剩余部分进行分类,利用光谱信息以及图像解释的其他元素,例如上下文、形状、大小、位置、关联、图案、阴影和纹理。o 将分类从 eCognition 导出到 TIF 光栅文件中。• 每套规则都经过了微调,并在城市中额外的随机图块上进行了测试。• 使用 eCognition Server,每个最终规则集都用于对圣保罗所有部分的所有图块进行分类。• 使用 ERDAS Imagine Mosaic Pro 中的几何接缝线将各个分类图块连接成一个马赛克。• 城市的三个不同部分(由 402 个单独的图块表示)被合并到一个分类文件中。
3.1该服务水平规格所涵盖的服务范围仅限于那些造成降雨造成的河流洪水的人,在降雨中,典型的降雨到洪水为六个小时或更长时间。山洪(少于六个小时的雨到洪水)和纯粹是由海平面升高造成的洪水,该局提供的天气预报和其他服务也没有促成洪水预测和警告服务,包括严重的天气和严重的thunderstorm警告,热带气旋警告,对雷达数据和降雨造成雷达数据和降雨造成的遗迹。附表2是新南威尔士州洪水计划中包含的信息(新南威尔士州紧急服务,2021年)中包含的信息的最新版本(截至2022年10月),该信息支持文件提供的文件和新南威尔士州洪水警告的要求(NSW State Sempry Service,2019年,2019年),该文件也定义了大多数位置的警告提前时间要求。