空间交通管理和协调 (STM/C)、应急管理 (EM)、研究以及全球导航卫星系统 (GNSS) 的应用和用户。所确定和采访的部门在国家安全、经济和社会中发挥着重要作用。SWAG 制定了一套可以针对所有部门提出的通用问题和一套针对特定部门的问题。对于大多数部门,焦点小组用于收集调查信息。GNSS 部门规模庞大且种类繁多,因此信息将在 2 年或更长时间内通过在线调查和焦点小组收集。GNSS 部门调查正在进行中,结果未在随附报告中呈现。
征文:教育和教育研究中的人工智能国际研讨会 (AIEER) AIEER 2024 教育和教育研究中的人工智能国际研讨会是第 27 届欧洲人工智能会议 ECAI 2024 [https://www.ecai2024.eu/] 的一部分。本次研讨会定于 2024 年 10 月 19 日至 20 日星期六和星期日举行。 研讨会范围 本次研讨会有两个不同的重点,旨在更广泛地面向教育人工智能领域。 第 1 部分。由社会科学主导的讨论,讨论人工智能应用可能有助于解决的教育中的实际问题。这包括教育和教学人工智能的研究,也包括社会科学、经济学和人文学科,包括所有学科,如教育和教学实际行动、以教育需求为重点的劳动力市场研究、教育史和相关教育文化遗产,以及决策和行为科学观点的信息预测。一方面,我们关注人工智能、教育和社会之间的联系。这包括定量和定性研究、分析教育和劳动力市场数据的数据科学方法、推荐系统的人工智能方法以及数字化学习。另一方面,我们关注如何使用人工智能来突破该领域的界限。这包括开发新方法(包括使用人工智能的方法)、寻找和提供可访问的新数据源、丰富数据等等。在这两种情况下,不同观点之间的沟通和相互理解至关重要,这也是本次研讨会的目标之一。更广泛地说,我们感兴趣的是人工智能方法如何影响教育的所有领域以及企业和劳动力市场。这包括从小学到高等教育的所有教育部门如何受到人工智能方法的影响和对其作出反应的方法。用人工智能方法设计数字化未来为教育提出了几个问题:在最广泛的层面上,立法和规范问题;在公司层面,关于投资决策以及如何保持生产力和劳动力的问题;在个人层面,关于资格以及哪些技能需要应用和可能重新学习的问题。因此,技能和资格是教育和教育研究中人工智能的核心。第 2 部分。关于可以开发哪些人工智能应用程序(以及如何开发)来解决第 1 部分提出的问题的(计算机科学主导)讨论。使用基于人工智能的系统来支持教学或学习已经发展了 40 多年,但近年来,由于 COVID-19 大流行期间电子学习工具的使用增加以及最近生成人工智能的爆炸式增长,其增长显着增加。我们正处于这一领域发展的关键时刻,人工智能专家和教育专家必须携手合作,以在教学过程中最佳地利用这项技术。本次研讨会旨在为展示新提案和反思这一具有如此社会意义的领域的最新技术创造空间。在第一部分中,我们特别关注人工智能的技术方面,重点关注用于内容创建(生成式人工智能)、学生分析(机器学习)、学习分析或教师可解释的人工智能方法的具体技术
备注:1。空缺,需求和成功/不成功的分配数据显示该课程类别,除非另有说明,否则本回合中的主列表中选择的课程类别。2。在不同的“选择课程”回合的不同学生可以使用同一门课程。一般指南检查该课程是否在特定的一轮中可用如下:•“选择课程”第1轮是针对计划要求,受限/直接次要要求和CELC英语要求的受保护回合。•“选择课程”第2轮开始包括针对大学级别要求和不受限制的选修要求选择课程。3。“空缺”列显示了当前一轮的选择课程分配时的配额(按学生的职业生涯)。它会受到变化的约束,例如在为应得的学生运行分配过程之前由管理员分配的课程。在处理选定课程(第3轮)并提交课程请求时,将合并课程课程的所有可用空缺。当课程课程达到其最大容量时,它将使用“ - ”更新。在这种情况下,不允许学生选择课程或提交上诉。4。“其他”列包括诸如课程已经分配的原因,正在取消课程或学生的计划状态不再活跃。5。请注意,大多数法律选修课程的总配额(在所有学术职业中)为50。第1页,共110页,AS 8-JAN-25
美国国家航空航天局和美国国防部正在实施支持“智能”飞机发动机未来愿景的项目,以提高飞机推进系统的可负担性、性能、可操作性、安全性和可修复性。智能发动机将具有先进的控制和健康管理功能,使这些发动机能够自我诊断、自我预测和自适应,以根据发动机的当前状况或车辆的当前任务优化性能。传感器是实现智能发动机愿景所必需的关键技术,因为它们依赖于准确收集发动机控制和健康管理所需的数据。本文从控制和健康管理的角度回顾了支持智能发动机未来愿景的预期传感器要求。推进控制和健康管理技术在主动组件控制、推进健康管理和分布式控制等广泛领域进行了讨论。在这三个领域中,我们将描述单个技术,讨论控制反馈或健康管理所需的输入参数,并总结用于测量这些参数的传感器性能规格。
● 萨顿 27.4%(57,179 人)的人口年龄在 18 至 39 岁之间,低于伦敦的人口(35.2%),但与英格兰的人口(28.5%)相当。 ● 迁出该行政区的年轻人导致 18 至 24 岁年轻人数量下降。这一趋势可能反映了年轻人前往其他地方上大学的影响。由于萨顿没有大学,我们没有看到该年龄段年轻人相应涌入 3 。 ● 相比之下,居住在萨顿的 40 至 64 岁的成年人(34.1%,71,502 人)相对伦敦(31.4%)和英格兰(31.2%)更多。 ● 50 岁以上的人是萨顿的净移民。离开该行政区的这个年龄段的成年人多于迁入萨顿的成年人。这一趋势导致该行政区的人口老龄化速度低于其他地区(更多详情请参见第 11 页)。
本文分析了 1998-2019 年西班牙经济增长的需求主导决定因素。我们采用了 Freitas/Dweck (2013) 提出的超乘数需求主导增长核算方法,并做了两点修改:首先,我们将消费纳入公共转移支付,遵循 Haluska 等人 (2021) 和 Haluska (2021) 的研究。其次,我们将公共工资中的消费纳入自主需求的来源,这是 Serrano/Pimentel (2019) 在理论上提出的。我们的需求主导增长分解突出了 (i) 公共需求和出口是重要的稳定增长动力,而超乘数的下降会降低增长率;(ii) 房地产繁荣对 1998-2008 年经济扩张的间接影响,这是由于公共收入增加并为公共需求扩张打开了空间;(iii) 出口无法单独引领复苏,因为复苏只有在公共和私人需求恢复后才开始。
价格体系:在经济学中,价格体系是一种确定任何形式财产(有形或无形)估值的体系。由于资源稀缺,所有社会都在资源分配和交换中使用价格体系。即使在没有货币的易货系统中,价格体系仍用于确定交换财产之间的交换比率(相对估值)。价格体系可以是受管制的价格体系(如固定价格体系),其中价格由当局管理,也可以是自由价格体系(如市场体系),其中价格由供求关系“自由”浮动,不受当局干预。混合价格体系涉及管制价格体系和自由价格体系的结合。
a.为了让陆军信息系统物资开发商最大限度地利用专门针对国家安全需求的现有和未来太空资产,陆军需要深入了解现有和未来太空资产的属性和局限性,无论它们专注于支持哪个部门。陆军需要这种理解来利用国家安全太空资产,继续并扩大其已经成功的国家能力战术利用 (TENCAP) 计划。陆军需要建立新的手段,使其能够与商业太空系统开发商合作,目标是使商业太空系统尽可能地支持陆军的需求,同时陆军的投资最少或适度。
空气动力学、结构、材料、推进、电子和系统。NAL 在 20 世纪 70 年代最杰出的工程成就是开发了用于测试飞机疲劳寿命的全尺寸疲劳试验设施,这对延长各种飞机的寿命做出了重大贡献。到 20 世纪 70 年代中期,NAL 已成为印度航空领域的主要参与者之一。它被公认为管理最完善的国家实验室,承担了 100 多个航空航天领域的高科技研发项目。NAL 在此期间活动的一个非常引人注目的特点是数字“”·设备开发能力范围令人惊叹,例如数据记录和负载测量系统、温度控制器等。一个非常成功的故障分析和事故调查小组逐渐发展起来。这项活动旨在满足印度航空航天组织的需求。许多涉及飞机、直升机和用于国防飞机的地面设备的事件/事故的调查被 IAF(印度空军)、HAL(印度斯坦航空有限公司)、MoCA(民航部)等提交给实验室进行调查。截至目前,该小组已调查了 1,500 多起民用和军用飞机事故/事件。NAL 将探索在故障分析中引入人工智能 (AI) 和数据分析,以快速获得结果。纤维增强塑料 (FRP) 试验工厂的建立是为了建造大型机鼻雷达罩来容纳敏感的电子设备。
例如,如果家庭安装了恒温器,当电价上涨或下跌(财政刺激)时,恒温器会自动改变供暖温度(智能自动化),这样家庭就可以省钱。或者,如果他们收到一条消息告知他们电价何时非常高,他们可以将此视为一种友好的提醒,以节省更多(基于信息的刺激)。关键是要找出这三种方法的有效性。为了理解这一点,我们的评论深入研究了能源经济学文献,并特别关注自 2007 年以来发表的论文,这些论文展示了旨在让家庭在特定时间段(通常是一天中的特定时段(高峰))减少电力消耗的实验结果,使用上述三种方法中的一种或多种。在此过程中,我们提取了 150 个平均处理效果,它们表示这些特定时间段内电力消耗的百分比下降。