用于观测近地空间的新型双管望远镜 OM Kozhukhov 国家空间设施控制和测试中心,乌克兰基辅 OB Bryukhovetsky、DM Kozhukhov、VI Prysiaznyi、AP Ozerian、OM Iluchok、VM Mamarev、OM Piskun 国家空间设施控制和测试中心,乌克兰基辅 摘要 2021 年底,乌克兰国家航天局在外喀尔巴阡地区安装了一台新望远镜,以观察近地空间物体,以满足乌克兰空间监测与分析系统的利益。该望远镜由两个管子(0.35 m、f/2.0 和 0.25 m、f/12.0)组成,安装在一个带直接驱动的赤道仪上,并配备 CMOS 摄像机。望远镜和摄像机由原始软件控制。我们将介绍该望远镜的设计和各个系统,以及使用它观测不同轨道的近地空间物体的初步结果。1.引言光学传感器是空间态势感知(SSA)的重要信息来源。它们可以高度精确地估计近地驻留空间物体(RSO)的角坐标和视亮度,从而优化它们的轨道并确定它们的状态。它们可以观测从低地球轨道(LEO)到地球静止轨道(GEO)及更远的所有可能轨道上的RSO。光学观测对于中轨道(高度20,000 km)和高轨道(GEO及以上)的物体尤其重要,因为这些轨道上难以使用雷达。尽管光学传感器有诸多优点,但也存在严重的局限性。它们大多数只能在夜间工作,而且与雷达不同,它们严重依赖天气(多云)。此外,大多数光学传感器在观测低地球轨道物体时吞吐量相对较低[1]。部分抵挡后两个限制的方法是制造新的传感器。同时,光学传感器面临的各种任务通常需要不同的工具才能最有效地发挥作用。这个问题可以通过在同一支架上组合不同类型的镜头来解决,如下所述。还应该注意的是,在不同的国家[2]-[4]已经在一个支架上安装两个相同和不同的镜头很长时间了。2.望远镜规格望远镜是位于乌克兰西部扎喀尔巴阡地区(图1)的光电光电观测站3型(OEOS-3)的一部分。喀尔巴阡山脉将它与该国其他地区隔开,因此这里的气候条件与乌克兰其他地区有显著不同。它使我们假设,当乌克兰其他地区多云时,该地区的传感器可能具有良好的观测条件,反之亦然。 OEOS-3望远镜由安装在同一赤道仪上的两个镜头组成(图2):一个宽视场(WFoV)汉密尔顿镜头和一个窄视场(NFoV)马克苏托夫镜头。两款镜头均配备 QHY-174M GPS CMOS 相机(图 3)。它们以相对较低的价格提供准确的观测时间。这对于 LEO 观测尤其重要。该支架配备直接驱动器。该驱动器提供 20 度/秒的最大旋转速率,并跟踪近地轨道上的任何 RSO。望远镜的特性如表 1 所示。
因此,我们成功进一步扩展了研究基础设施。2021 年 4 月,我们正式启用了“高效太阳能电池中心”的新实验室大楼。这座大楼的建设得益于德国联邦教育和研究部 (BMBF) 和巴登-符腾堡州的资助(第 50/51 页)。我们的目标是进一步加强串联光伏技术的开发。在串联太阳能电池中,结合了具有不同电子特性的材料,例如 III-V 半导体、钙钛矿或硅。这可以克服传统太阳能电池仅使用一种材料的物理效率极限,并为节省太阳能电池和模块材料提供了巨大潜力——这是朝着光伏可持续性迈出的重要一步。
该战略列出了 6 个关键优先事项,并概述了地方当局 (LA)、临床委托小组 (CCG)、有学习障碍的成年人及其家人、我们的主要合作机构以及健康与社会护理领域的其他服务机构(包括志愿和社区部门)之间的伙伴关系。新战略将由成人学习障碍伙伴关系委员会 (LDPB) 指导,其成员包括 SEN 健康和残疾助理主任、专业社区残疾服务服务主管(14-24 岁和 25 岁以上小组)和成人学习障碍专员。SEND 伙伴关系委员会还将监督针对过渡的具体行动的进展情况。LDPB 由 Brighton and Hove Speak Out 及其 Link Group 担任主席。LDPB 的成员名单列于附录中。将有 6 个工作流,每个优先领域一个,每个工作流都有一名指定的负责人。工作流将推动关键行动,每个优先领域的负责人将每年两次向 LDPB 汇报进展情况以及影响交付的任何问题,并为 LDPB 和健康与福祉委员会 (HWB) 制作年度总体报告。委员会的目的是为布莱顿和霍夫的健康和福祉相关的卫生和地方当局职能提供领导,并负责协调提供成人社会护理、公共卫生以及儿童和青少年健康与福祉服务。我们认识到,要执行已确定的优先事项,将需要大量承诺和资源。有关如何实现这一目标的更多信息,请参见附录 5。工作流还需要考虑 Covid 19 大流行的影响和经验教训,请参见附录 6。
自2021年以来的研究助理,意大利MILANO,意大利MILANO,ESA的M-ARGO任务研究助理2018ZentrumFürTelematikE.V.(DLR),德国研究领域:太空轨迹优化,任务分析国际工程研究生计划2016 - 2017年德国AAM德国,德国,德国
»我们需要一系列的智慧理念来应对我们时代的主要挑战:例如环保的能源生产和储存!总体任务包括组建跨地域、跨学科的研究团队。与来自不同文化背景的人们一起寻找创造性的解决方案——这是我在未来日益网络化的世界中特别兴奋的事情。«
观察当前的技术趋势可以一劳永逸地证明:数字化转型是一股不可阻挡的力量,影响着生活的各个领域。数字化和人工智能有可能彻底改变我们的日常生活以及工业和经济,无论是通过智能家居、自动驾驶汽车还是全自动生产和供应链。智能网络技术用途广泛;然而,物联网应用有一个共同点:在虚拟世界和现实世界之间、人与机器之间的接口上,总有一个传感器充当数据提供者,从而构成物联网的关键组成部分。作为创新传感器和执行器技术、数据通信新技术和基于 MEMS 的微系统的专家,我们多年来一直是客户可靠的合作伙伴。我们工作的重点是开发可用于工业领域的多个问题的解决方案,包括智能工业解决方案和改善生活质量以及医疗技术和健康。
流动海洋表面的湍流与陆地上的湍流具有不同的特性。因此,基于陆地上的湍流动能 (TKE) 预算和莫宁-奥布霍夫相似理论 (MOST) 的发现可能不适用于海洋条件,部分原因是存在波边界层(大气边界层的下部,包括表面波的影响;我们在本文中使用术语“WBL”以方便使用),其中总应力可分为湍流应力和波相干应力。这里湍流应力定义为由风切变和浮力产生的应力,而波相干应力则考虑了海浪和大气之间的动量传递。在本研究中,研究了湍流动能 (TKE) 预算和惯性耗散法 (IDM) 在 WBL 内 MOST 背景下的适用性。我们发现,在计算波浪条件下的总应力时,不应忽略 TKE 预算中的湍流传输项。这已通过在固定平台上进行的观测得到证实。结果还表明,在 WBL 内应用 MOST 时应使用湍流应力,而不是总应力。通过结合 TKE 预算和 MOST,我们的研究表明,传统 IDM 计算的应力对应于湍流应力,而不是总应力。在应用 IDM 计算 WBL 中的应力时,应考虑波浪相干应力。
