随着各个科学领域的技术突破,不同国家的科学家构想出了各种太空通信理念。俄罗斯科学家康斯坦丁·齐奥尔科夫斯基 (1857-1935) 是第一个将太空旅行作为一门科学进行研究的人,并于 1879 年提出了火箭方程,该方程至今仍用于现代火箭的设计。他还首次对人造卫星进行了理论描述,并指出了地球同步轨道的存在。但他没有发现地球同步轨道的任何实际应用。著名的德国科学家和火箭专家赫尔曼·奥伯特于 1923 年提出,轨道火箭的机组人员可以通过镜子发送信号与地球上的偏远地区进行通信。1928 年,奥地利科学家赫尔曼·诺登认为地球静止轨道可能是载人航天器的理想位置。1937 年,俄罗斯科学家提出,电视图像可以通过从航天器上反射来中继。 1942-1943 年间,乔治·O·史密斯在《惊人的科幻小说》中发表了一系列文章,其中介绍了一颗人造行星——金星等边行星,当太阳阻挡直接通信时,它充当金星和地球站之间的中继站。然而,电子工程师和著名科幻小说作家亚瑟·C·克拉克通常被认为是现代卫星通信概念的创始人。
阿丽亚娜-5E 显然,发送到地球静止轨道(阿丽亚娜的主要市场)的商业通信卫星的质量将会继续增长。阿丽亚娜-5 进入 GTO 的目标容量为 5.97 吨,将不再能够容纳每次发射两颗卫星,而这对于盈利至关重要。因此,1995 年 10 月在图卢兹举行的欧空局部长理事会批准了阿丽亚娜-5E(E=Evolution)计划,将双有效载荷 GTO 容量提高到 7.4 吨,预计 2002 年投入使用。大部分改进(800 千克)来自于将主发动机升级为 Vulcain-2 型号:通过加宽喉管 10%、增加燃烧室压力 10%、延长喷嘴和改变 LOX/LH 2 混合比,将推力提高到 1350 kN。最后一个要素要求将油箱舱壁降低 65 厘米,将推进剂质量增加到 170 吨。焊接助推器壳体而不是用螺栓将它们连接在一起可节省 2 吨重量,并允许在顶部段多装 2430 公斤推进剂,从而将 GTO 容量提高 300 公斤。VEB 的新复合结构可节省 160 公斤重量。用更轻的 Sylda-5 替换 Speltra 运载器可增加 380 公斤容量。燃烧期间的滚动控制将由推进器提供
阿丽亚娜-5E 显然,发送到地球静止轨道(阿丽亚娜的主要市场)的商业通信卫星的质量将会继续增长。阿丽亚娜-5 进入 GTO 的目标容量为 5.97 吨,将不再能够容纳每次发射两颗卫星,而这对于盈利至关重要。因此,1995 年 10 月在图卢兹举行的欧空局部长理事会批准了阿丽亚娜-5E(E=Evolution)计划,将双有效载荷 GTO 容量提高到 7.4 吨,预计 2002 年投入使用。大部分改进(800 千克)来自于将主发动机升级为 Vulcain-2 型号:通过加宽喉管 10%、增加燃烧室压力 10%、延长喷嘴和改变 LOX/LH 2 混合比,将推力提高到 1350 kN。最后一个要素要求将油箱舱壁降低 65 厘米,将推进剂质量增加到 170 吨。焊接助推器壳体而不是用螺栓将它们连接在一起可节省 2 吨重量,并允许在顶部段多装 2430 公斤推进剂,从而将 GTO 容量提高 300 公斤。VEB 的新复合结构可节省 160 公斤重量。用更轻的 Sylda-5 替换 Speltra 运载器可增加 380 公斤容量。燃烧期间的滚动控制将由推进器提供
1. AIT:组装、集成和测试 2. AO:机会公告 3. AoA:公司章程 4. BBIU:重新投入使用 5. BIU:投入使用 6. BSS:广播卫星服务 7. BW:带宽 8. CDR:关键设计审查 9. CIN:公司识别码 10. COLA:防撞分析 11. COMINT:通信情报 12. CPSE:中央公共部门企业 13. DoS:空间部 14. DoT:电信部 15. DPIIT:工业和国内贸易促进部 16. DSM:数字表面模型 17. DST:科学技术部 18. DTM:数字地形模型 19. EIRP:有效/等效全向辐射功率 20. ELINT:电子情报 21. EO:地球观测 22. FDI:外国直接投资 23. FMECA:故障模式、影响和危害性分析 24. FSS:固定卫星服务 25. G/T:噪声温度增益 26. GSD:地面采样距离 27. GSO:地球静止轨道 28. GSTIN:商品及服务税识别号 29. HEO:高椭圆轨道 30. IARU:国际业余无线电联盟 31. IDP:IN-SPACe 数字平台(www.inspace.gov.in) 32. IEC:进出口代码 33. IN-SPACe:印度国家空间促进与授权中心 34. ISP:印度空间政策 35. ISRO : 印度空间研究组织 36. IST : 综合卫星测试
2D 二维 3D 三维 3GPP 第三代合作伙伴计划 5G 第五代无线蜂窝技术 6G 第六代无线蜂窝技术 ADHD 注意力缺陷多动障碍 APA 美国心理学会 ACI 人工智能 A2G 空对地 AGI 通用人工智能 AI 人工智能 AIGO 人工智能治理工作组 (OECD) AIM 人工智能事件监测 (OECD) AR 增强现实 API 应用程序编程接口 ATM 空中交通管理 BERT 双向编码器 Transformers 表示 BRL 巴西雷亚尔 CEN-CENELEC 欧洲电子和电子技术标准化委员会 COVID-19 2019 冠状病毒病 CPU 中央处理器 DICE 危险、不可能、适得其反或昂贵 DISR 澳大利亚工业、科学和资源部 DSIT 英国科学、创新和技术部 DSUT 数字供应-使用表 EASA欧盟航空安全局 ETSI 欧洲电信标准协会 EU AI 欧盟人工智能条例 EUR 欧元 EuroHPC 欧洲高性能计算联合承诺 eVTOLs 电动垂直起降 FCC 美国联邦通信委员会 FOV 视场 GDP 国内生产总值 GenAI 生成人工智能 GEO 地球静止轨道 GHz 千兆赫 GPAI 全球人工智能伙伴关系 GPU 图形处理单元 GPT 生成预训练变压器 GPT 通用技术 GSMA 全球移动通信系统 HAPS 高空平台站
与现有的网络功能相比,低地球轨道 (LEO) 网络具有显著优势。与现有的地球静止轨道 (GEO) 卫星网络相比,低地球轨道 (LEO) 网络的延迟要低得多,并且在许多市场上可与地面光纤互联网相媲美,无论是在延迟 [ 29 ] 还是覆盖范围方面(例如,为未连接地面网络的战区提供互联网服务,就像俄罗斯和乌克兰之间的武装冲突 [ 12 ] 中所做的那样)。此外,低地球轨道 (LEO) 卫星还可以执行卫星图像处理等太空原生任务 [ 42 ]。这些趋势反过来又引起了学术界的极大兴趣,从而产生了一系列关于低地球轨道 (LEO) 计算 [ 3 , 5 , 59 ]、网络 [4, 30, 45] 和应用 [19, 64] 的研究。低地球轨道 (LEO) 星座是一种特殊类型的 CPS 基础设施,因此是一种高价值资产。就像关键的地面基础设施(如电网 [ 15 , 61 ] 和数据中心 [ 6 , 35 ])一样,LEO 星座的安全性至关重要,因为它们将成为攻击的主要目标。由于每颗卫星都配备了计算、网络、存储和传感系统,LEO 星座表现出类似的攻击媒介范围。事实上,由于 LEO 星座的独特特性,安全问题被放大了。跨地理区域(包括潜在敌对国家)的移动性,以及地面部署(例如数据中心仓库)缺乏物理边界,导致了进一步的复杂化。LEO 攻击也更难防御
AI 人工智能 CASTR 奇尔博尔顿先进卫星跟踪雷达 CNI 关键国家基础设施 COATS 奇尔博尔顿光学先进跟踪系统 COLA 发射碰撞评估 CSpO 联合空间作战计划 DSS 英国国防空间战略 EGNOS 欧洲地球静止导航覆盖服务 EoL 寿命终止 ESA 欧洲航天局 ESG 环境、社会和治理 EUSST 欧洲空间监视和跟踪 GEO 地球静止轨道 GNOSIS 全球空间可持续发展网络 GNSS 全球导航卫星系统 IADC 机构间空间碎片协调委员会 ICAO 国际民用航空组织 ICT 信息通信技术 IOSM 在轨服务和制造 ISR 情报、监视和侦察 LEO 低地球轨道 MEO 中地球轨道 MOSWOC 气象局空间气象作业中心 MoD 英国国防部 NSpOC 国家空间作业中心 NSS 英国国家空间战略 PIMS 被动成像公制传感器 PNT 定位、导航和授时 ROI 回报率投资 SDA 空间领域感知 SLR 卫星激光测距 SSA 空间态势感知 SST 空间监视与跟踪 STEM 科学、技术、工程和数学 STFC 科学与技术设施委员会 STM 空间交通管理 UHF 超高频 UKRI 英国研究与创新 US SSN 美国空间监视网络
1. 在本命令和授权中,我们有条件地批准 Lynk Global, Inc. (Lynk) 的申请,在低地球轨道 (LEO) 上建造、部署和运行非地球静止轨道 (NGSO) 卫星。Lynk 计划为目前作为地面全球移动通信系统 (GSM) 和长期演进 (LTE) 蜂窝服务的一部分运行的用户终端提供卫星连接。具体而言,我们有条件地批准十颗卫星的运营申请,这些卫星被标识为 Lynk Towers 1 至 10,它们将使用 617-960 MHz(空对地)和 663-915 MHz(地对空)频段的部分频率与美国境外的地面站一起运行。 Lynk 还被授权使用 20.1-20.2 GHz(空对地)和 29.9-30.0 GHz(地对空)频段操作馈线链路,并与卫星进行带内遥测、跟踪和指挥 (TT&C) 操作,但前提是完成与其他 Ka 波段系统的协调。Lynk 还被授权使用 2200-2290 MHz(空对地)和 2025-2110 MHz(地对空)频段进行 TT&C 操作,用于紧急备用操作,但前提是完成与联邦系统的协调。就此项拨款而言,我们处理了铱星星座有限责任公司 (Iridium) 提出的拒绝请求、休斯网络系统有限责任公司 (Hughes) 提出的非正式反对意见以及国际海事卫星组织 (Inmarsat)、柯伊伯系统有限责任公司 (Kuiper) 和美国国家射电天文台 (NRAO) 提出的意见。
摘要:在接下来的几年中,欧洲的气象卫星剥削组织(Eumetsat)将开始部署其下一代地理气象学卫星。METEOSAT第三代(MTG)由四个成像(MTG-I)和两个发声(MTG-S)平台组成。卫星是三轴稳定的,与旋转稳定的两代MeteoSat不同,并携带两组遥感仪器。因此,除了提供连续性外,新系统还将提供对地静止轨道前所未有的能力。MTG-I卫星上的有效载荷是16通道柔性组合成像仪(FCI)和闪电成像器(LI)。MTG-S卫星上的有效载荷是高光谱红外声音(IRS)和由欧洲委员会提供的高分辨率紫外线 - 可见的 - 近红外(UVN)Sounder-Sounder-4/UVN。今天,中国宫殿轨道的高光谱声音由中国宫颈轨道4A(FY-4A)卫星卫星地静止的静态干涉测量器(GIIRS)仪器提供,闪电映射器在FY-4A上可用,在FY-4A上可用,在国家大洋洲和大气管理(NOAAA)上(NOAA)和16和16和16 and-16 and-16 and-17 Satellites。因此,这类工具的科学和应用的发展具有坚实的基础。但是,IRS,LI和Sentinel-4/UVN在地静止轨道上是欧洲的挑战性。四个MTG-I和两个MTG-S卫星的设计分别提供20年和15。5年的运营服务。大约在一年后,预计将在2022年底和第一个MTG-S发射。本文介绍了四种工具,概述了产品和服务,并介绍了更多应用程序的演变。
在轨服务 (OOS) 为航天器 (s/c) 的加油、检查、维修、维护和升级提供了新的机会。随着技术的成熟和经济前景的改善,OOS 是未来航天增长的一个重要领域。这种拥堵促使航天器运营商探索如何利用 OOS。地球静止轨道 (GEO) 航天器的 OOS 任务目前正在进行中。这是由于为长寿命整体式化学推进 GEO 资产加油的商业案例已经结束。然而,除了技术演示外,目前还没有针对低地球轨道 (LEO) 航天器的 OOS 计划,因为它们的设计寿命较短且成本较低。随着行业将重点转向 LEO,为 LEO 航天器提供服务将变得尤为重要。为 LEO 星座设计 OOS 系统与基于 GEO 的系统不同,这种差异归因于 LEO 卫星的扩散、环境影响(J2 节点进动、阻力)和不同的星座模式。由于访问增加、分布式风险、灵活性和成本增加,LEO 中的卫星星座正变得更加分散。s/c 的 OOS 可以减少对子系统的要求,例如安全性和冗余需求。这些要求的减少将降低风险、降低成本并提高系统弹性。本文分析了扩散的 LEO 星座中 OOS 的好处。对几种 OOS 系统架构进行了建模;在每个系统架构中,模型将改变服务商数量、高度和轨道机动等质量。该模型的目标是优化成本、时间和效用,以生成 OOS 系统架构的权衡空间。