摘要 地球同步 (GEO) 轨道区域中的大多数活跃卫星都会执行一致的定位机动,以在其整个运行寿命期间(从入轨到退役)保持在特定的地理纵向位置附近。为了避免由于卫星在物理上以相似的纵向位置彼此靠近运行,同时以相似的无线电频率传播频谱上彼此靠近的信号而导致的拥塞问题(这可能会增加卫星间碰撞或有害无线电频率干扰的威胁),卫星运营商必须在发射前从联合国专门机构国际电信联盟 (ITU) 获得空间网络许可证。自 1971 年以来,国际电信联盟已向卫星运营商授予许可证,允许其从特定轨道位置或以纵向度数衡量的地球静止轨道带的某些部分传播特定频率的信号。尽管 GEO 轨道区域确实很受欢迎,但国际电信联盟授予的空间网络许可证的数量远远超过向该区域发射的实际活跃卫星数量。本研究使用国际电信联盟空间网络列表 (SNL) 和空间网络系统 (SNS) 数据库中的空间网络申报信息以及美国太空军 (USSF) 第 18 空间控制中队 (18 SpCS) 维护并在 Space-Track.org 上公布的空间物体目录中的轨道元素数据,将国际电信联盟空间网络许可证环境与 GEO 中的活跃在轨卫星群进行比较。开发了一种将 GEO 卫星与空间网络许可证相匹配的算法,并将其应用于 2021 年 12 月 31 日之前收到的所有空间网络申报。该算法还针对截至 2022 年 1 月 1 日正在积极执行定位保持机动的所有 GEO 卫星进行了评估,将实际定位保持位置与卫星匹配许可证中规定的标称纵向位置进行比较。本文最后讨论了提交空间网络申请的国际电信联盟各成员国和使用这些申请的空间运营商的选定结果。
美国宇航局的太空通信和导航 (SCaN) 计划是美国宇航局太空行动任务理事会 (SOMD) 下属的一个组织。SCaN 是 NASA 所有太空通信和导航活动的项目办公室,负责近太空网络 (NSN) 和深空网络 (DSN) 提供的地面和太空设施、设备和服务的运营、维护和维持。美国宇航局的 SCaN 网络在任务从发射到寿命结束和/或脱离轨道的整个运行生命周期内为太阳系的任何地方提供太空通信和导航服务。对于在到达深空目的地之前需要近太空服务的任务,或者在使用两个网络可能有利的地区运行的任务,例如在月球或太阳-地球拉格朗日点 1 (SE-L1) 和太阳-地球拉格朗日点 2 (SE-L2),每个网络都需要单独的任务集成过程。但是,SCaN 人员在跨网络合作方面有着悠久的历史,NSN 和 DSN 将协调支持使用这两个网络的任务。这种协调包括共享运营规划、寻找通用接口和共享任何测试的结果。DSN 由使用超大孔径(34 米和 70 米)天线的地面站组成,专注于为地球静止轨道 (GEO) 以外的任务提供支持。DSN 主要支持行星任务和距离地球 200 万公里以外的任务,这些区域被称为 B 类 - 深空。DSN 设施战略性地分布在三个地理位置:(1) 加利福尼亚州戈德斯通、(2) 西班牙马德里和 (3) 澳大利亚堪培拉。这些设施共同提供深空任务轨迹的近乎全天候覆盖。NSN 是近太空的主要服务提供商,因此更昂贵的 DSN 资产可以免费为深空任务提供 C&N 服务。本文档介绍了 SCaN 的近太空网络服务,该服务由 NASA 的戈达德太空飞行中心 (GSFC) 管理,并通过商业提供商和政府拥有的系统混合提供。本文档不涵盖此处提供的高级描述以外的 DSN。 DSN 的管理和运营由位于加利福尼亚州帕萨迪纳的喷气推进实验室 (JPL) 负责。本文档未包含有关 DSN 服务和功能的进一步描述。如需更多信息或购买 DSN 服务,请参阅 DSN 用户指南并联系 SCaN 的任务承诺办公室 (MCO)。
如今,太空环境正在经历一场彻底的变革,影响到技术、太空使用、任务概念和操作。电力推进一旦被证明其可靠性和能力,在过去十年中已开始用于商业和科学卫星,无论是低地球轨道 (LEO) 还是地球静止轨道 (GEO),而且其使用量预计还会增长。20 世纪 90 年代末的技术改进导致空间部件小型化,最终使卫星尺寸得以缩小。自 2003 年第一颗立方体卫星发射以来,大学或商业用途对此类小型卫星的使用不断增加,对未来太空环境演变的分析表明,这种增长将在未来十年保持下去。随着小型卫星数量的增加,预计每年的发射率也会更高,新的国家和私人参与者也会加入进来。在这些新参与者中,由于其对轨道环境的影响,可能最相关的将是集群和星座任务。巨型卫星群与小型卫星群一起,将代表未来十年低地球轨道系统最深刻的变化。多个巨型卫星群已在规划中,每个卫星群由数千颗卫星组成,其中一些已开始部署阶段。预计未来几年,在轨卫星数量将增加数倍。考虑到目前的数量略低于 2,000 颗,这一数字将同时增加到数万颗在轨运行的卫星(Hugh 等人,2017 年)。除此之外,地球轨道上最常见的元素是空间碎片物体。空间碎片是指除运行卫星之外的所有人造太空物体以及被地球引力捕获的微流星体。它包括上级火箭体、仍在轨道上的非运行卫星、任务遗留物体以及因碎裂或碰撞而产生的旧卫星碎片。自 1958 年航天时代开始以来,空间垃圾物体的数量不断增长,目前轨道上大于 10 厘米的物体有 34,000 多个,1 厘米至 10 厘米之间的物体有 900,000 多个,更小的物体有数百万个(ESA 报告 2019)。预计这些数字在未来几年还会增加,这不仅与太空交通的增加有关,也与当前跟踪技术的改进有关。新的基础设施预计将在未来十年开始运行,以探测迄今为止无法跟踪的较小物体。虽然编目物体的增加并不意味着实际物体数量的增加,因为它们已经在轨道上,但这将增加卫星运营商遇到的会合警报数量(Haimerl 和 Fonder 2015)。
学生,新闻学 摘要 数以千计的人造碎片,即所谓的太空垃圾,以几公里的速度绕着地球旋转。尽管这些粒子中的绝大多数是中国、俄罗斯和美国的错,但它们仍然对地球轨道上的任何物体构成威胁。航天器已经变得极易受到垃圾的攻击,这可能会阻止它们在未来实现其计划的轨道。一些碎片太大,无法保护卫星,但又太小而无法检测到。为应对全球轨道碎片增长问题,人们已经采取了更多措施。特别是,普遍认可的碎片最小化标准禁止向地球轨道添加新的粒子。此外,轨道垃圾科学家一致认为,缓解措施不足以限制轨道上的碎片数量。为了确保即将执行的任务的安全,还需要开发和执行主动清除地球轨道垃圾的系统。考虑到太空垃圾的原因和起源、结构和影响以及实施计划,可以保护高空大气生态免受轨道碎片的影响。此外,由于 50 多年来用于调查、观察和防御的太空旅行,上层轨道上方的区域被轨道垃圾严重污染。九年来导弹发射的总数为这已成为将卫星置于正确轨道以及确保其在任务期间安全的问题。太空垃圾,也称为轨道碎片,包括火箭喷嘴弹、绝缘覆盖物和被毁航天器的碎片。根据任务的不同,这些卫星被放置在不同的轨道上。它们主要发射到 LEO(低地球轨道),即以地球为中心的直径为公里的轨道。其他卫星被放置在 300 万公里高空的高地球轨道上,有些甚至被放置在 GEO(地球静止轨道)上。自太空时代开始以来,大约有 7000 艘航天器被发射,将有效载荷运送到以每秒几公里的速度旋转的一系列地球轨道上。此外,LEO 拥有这些货物的一半以上。它们的尺寸估计在几毫米到几米之间,其中欧洲的 Envisat 是最大的。需要积极清除空间垃圾,因为风险正在迅速上升,是所有航天国家的主要担忧。相距仅一毫米且高速移动的碎片也对正在进行和即将进行的太空任务构成重大威胁。因此,这项研究的作者研究了太空垃圾带来的危险以及科学家和太空组织建议的一些清除方法。简介 太空:一个值得探索的秘密地方。全新、干净、未受破坏。但它有多完整?您向太空发送了多少颗卫星和探测器?我们在那里留下了多少东西?第一个记录在案的太空人造物体实际上不是众所周知的 Sputnik 1,而是将卫星送入轨道的火箭机身。自太空探索初期以来,太空垃圾就一直存在。有
摘要 2019 年建立了一个新的国际演习系列——商业冲刺高级概念训练 (SACT),以推进联合太空行动。商业 SACT 源自与美国太空司令部 (USSPACECOM)、商务部 (DoC) 和美国空军 (USAF) 的早期合作,旨在探索商业公司增强传统太空领域感知 (SDA) 和民用太空交通管理 (STM) 的潜力。SACT 团队认识到商业服务领域存在实质性的 SDA 能力,并相信提供一个在现实事件中合并和试验这些能力的环境可能会加速最先进的发展。从那时起,SACT 商业实验迅速发展,包括美洲、欧洲和太平洋大陆的多个国际合作伙伴。为期一周的太空行动活动系列每年举行三次,包括商业、政府和学术界的广泛参与者,他们合并执行多个日周期。每个周期都经过精心设计,使用现实世界的端到端操作系统来衡量和完善一系列太空操作“期望学习目标”(DLO)。DLO 由代表性赞助机构(包括 USSPACECOM 和 DoC)设计,以了解太空监视的真正商业能力在 SSA 和 STM 操作需求方面的状况。示例 DLO 类别包括:搜索和恢复(SAR)、近距物体(CSO)识别、卫星特性、高节奏监视、会合评估、会合和近距操作(RPO)分析等等。作为一项非机密活动,商业 SACT 吸收了国际范围内的知识,包括全球一些最新的商业空间运营技术。在上一届 SACT 期间,该演习系列有来自 40 多家商业公司、7 所大学和 25 个政府机构的多个外国合作伙伴的代表。作战控制权以轮班方式从澳大利亚无缝过渡到欧洲再到美国。该活动演习了全方位的 SDA 处理,包括:多现象学监视;先进轨道确定;指挥和控制 (C2);动态任务;图像处理;公共来源;人工智能 (AI) 支持的生命模式 (PoL) 分析;异常检测;等等。SACT 使所有利益相关者受益,尤其是监视和商业系统开发商。SACT 为政府和商业参与者提供了一个难得的机会,让他们从现实世界的情况中学习,并通过所有空间监视机制(包括低地球轨道 (LEO)、中地球轨道 (MEO)、地球静止轨道 (GEO) 和地月)了解其客户的需求。例如,随着一家加拿大初创公司开发其太空光学传感器星座,该公司正在从 SACT 中学习,并能够定制产品开发以更好地满足市场需求。SACT 如此具有挑战性的因素之一是高度重视实时执行真实世界的操作。本文传达了 SACT 演习系列如何成为推进太空运营各个方面的“创新和协作试验台”,以及它如何通过复兴(或复兴和重新引起人们的兴趣)国际合作成为推进民用太空交通管理的基础要素。
用于观测近地空间的新型双管望远镜 OM Kozhukhov 国家空间设施控制和测试中心,乌克兰基辅 OB Bryukhovetsky、DM Kozhukhov、VI Prysiaznyi、AP Ozerian、OM Iluchok、VM Mamarev、OM Piskun 国家空间设施控制和测试中心,乌克兰基辅 摘要 2021 年底,乌克兰国家航天局在外喀尔巴阡地区安装了一台新望远镜,以观察近地空间物体,以满足乌克兰空间监测与分析系统的利益。该望远镜由两个管子(0.35 m、f/2.0 和 0.25 m、f/12.0)组成,安装在一个带直接驱动的赤道仪上,并配备 CMOS 摄像机。望远镜和摄像机由原始软件控制。我们将介绍该望远镜的设计和各个系统,以及使用它观测不同轨道的近地空间物体的初步结果。1.引言光学传感器是空间态势感知(SSA)的重要信息来源。它们可以高度精确地估计近地驻留空间物体(RSO)的角坐标和视亮度,从而优化它们的轨道并确定它们的状态。它们可以观测从低地球轨道(LEO)到地球静止轨道(GEO)及更远的所有可能轨道上的RSO。光学观测对于中轨道(高度20,000 km)和高轨道(GEO及以上)的物体尤其重要,因为这些轨道上难以使用雷达。尽管光学传感器有诸多优点,但也存在严重的局限性。它们大多数只能在夜间工作,而且与雷达不同,它们严重依赖天气(多云)。此外,大多数光学传感器在观测低地球轨道物体时吞吐量相对较低[1]。部分抵挡后两个限制的方法是制造新的传感器。同时,光学传感器面临的各种任务通常需要不同的工具才能最有效地发挥作用。这个问题可以通过在同一支架上组合不同类型的镜头来解决,如下所述。还应该注意的是,在不同的国家[2]-[4]已经在一个支架上安装两个相同和不同的镜头很长时间了。2.望远镜规格望远镜是位于乌克兰西部扎喀尔巴阡地区(图1)的光电光电观测站3型(OEOS-3)的一部分。喀尔巴阡山脉将它与该国其他地区隔开,因此这里的气候条件与乌克兰其他地区有显著不同。它使我们假设,当乌克兰其他地区多云时,该地区的传感器可能具有良好的观测条件,反之亦然。 OEOS-3望远镜由安装在同一赤道仪上的两个镜头组成(图2):一个宽视场(WFoV)汉密尔顿镜头和一个窄视场(NFoV)马克苏托夫镜头。两款镜头均配备 QHY-174M GPS CMOS 相机(图 3)。它们以相对较低的价格提供准确的观测时间。这对于 LEO 观测尤其重要。该支架配备直接驱动器。该驱动器提供 20 度/秒的最大旋转速率,并跟踪近地轨道上的任何 RSO。望远镜的特性如表 1 所示。
● 2023 年小型卫星研讨会:未来战场 - 非地球静止轨道系统对频谱有何影响(2023 年 2 月 7 日至 9 日) ● 新美国低地球轨道卫星星座:为什么智能共享规则在太空中如此重要(2022 年 10 月 24 日) ● EDICON 2022 卫星宽带领域的最新趋势:低地球轨道、中地球轨道、地球轨道和巨型星座(2022 年 10 月 26 日) ● IEEE 无线和微波技术会议 (WAMICON 2022)(2022 年 4 月 27 日至 28 日) ● 卫星 2022 主持人小组讨论如何重新定义小型卫星地面系统和基础设施(2022 年 3 月 21 日) ● 2022 年东北射电天文台公司 (NEROC) 研讨会(由麻省理工学院主办)关于本科无线电科学课程(2022 年 2 月24,2022) ● 卫星 2021 主持人小组讨论如何克服设计限制和构建完美的低成本天线(2021 年 9 月 9 日)● EDICON 2021 当今的卫星宽带格局:LEO、MEO、GEO 和巨型星座(2021 年 8 月 18 日)● On Orbit 播客采访 Jeffrey Hill 关于平板天线技术(2021 年 8 月 6 日)● 空间数字论坛 2021 - 当今的卫星能做什么?了解新服务和功能(2021 年 7 月 26 日)● 主持人美国国家科学院工程与医学学院 (NASEM) 关于克服女性创业结构性障碍的研讨会(2021 年 6 月 21 日)● 密歇根大学气候与空间研讨会 - LEO 通信系统格局:技术进步和干扰缓解(2021 年 4 月 8 日)● 主题专家采访者 - Facebook Connectivity 的 Lumen 光通信纪录片(2020 年 12 月)● 宾夕法尼亚大学 Apogee K-12 女子电气工程项目职业小组成员(2020 年夏季)● 达特茅斯工程物理空间等离子体研讨会发言人(2020 年 1 月);从太空到地球:低地球轨道通信系统格局(2020 年 1 月)● 卫星 2020:小组主持人 – 未来月球经济:开采新资源 – 因 COVID 取消● 麻省理工学院 AeroAstro 研究生女性职业讨论研讨会(2019 年 10 月)● 女性航空航天研讨会小组成员:开始教师生涯(2019 年 5 月)● NASA JPL 未来空间辐射保障(2019 年 6 月);吸引和留住下一代空间辐射科学家和工程师● NCSU 机械和航空航天工程毕业典礼演讲者(2018 年 5 月)● NCSU 机械和航空航天工程特别讲座(2018 年)● 联合国妇女性别平等和主流化 (GEM) 女性互联网:挑战还是机遇?主旨小组成员(2017 年 3 月)● 卫星 2017 会议 – SGx:导师的重要性 ● 麻省理工学院航空航天女性午餐演讲系列 - OneWeb 通信系统(2017 年 2 月) ● 与联合国训练与研究中心联合举办的 2015 年国际电信联盟世界无线电大会 (WRC) 主题演讲者“关于在无线电通信谈判中赋予女性权力的女性领导力研讨会 - 关于女性在技术领域领导力的小组讨论” ● 日内瓦欧洲航空航天女性 - 太空创业(2015 年 3 月)