多结构域蛋白内的变构信号传导是空间上相距较远的功能位点之间通信的驱动因素。了解大型多结构域蛋白中变构耦合的机制是实现系统空间和时间控制的最有希望的途径。最近,CRISPR-Cas9 在分子生物学和医学领域的应用激增,这促使人们需要了解 Cas9 的原子级蛋白质动力学(这是其变构串扰的驱动力)如何影响其生物物理特性。在本研究中,我们使用核磁共振 (NMR) 和计算的协同方法来精确定位热稳定性 Geo Cas9 的 HNH 结构域中的变构热点。我们表明,K597 突变为丙氨酸会破坏盐桥网络,进而改变 Geo HNH 结构域的结构、变构运动的时间尺度和热稳定性。在广泛研究的中温 S. pyogenes Cas9 中,这种同源赖氨酸到丙氨酸的突变同样改变了 Sp HNH 域的动力学。我们之前已经证明,通过突变改变变构是 Sp Cas9 (e Sp Cas9) 特异性增强的来源。因此,这在 Geo Cas9 中可能也是如此。由 AIP Publishing 独家授权发布。https://doi.org/10.1063/5.0128815
David R. Jovel是南部地区教育委员会和国家研究生委员会的工程和科学学位(GEM)研究生学位的国家联盟(GEM)研究生,致力于博士学位。在佐治亚理工学院航空航天工程学院的高功率电气推进实验室。他赢得了学士学位2012年在德克萨斯大学奥斯汀大学的航空航天工程中,并继续在NASA Goddard太空飞行中心,轨道ATK,Intelsat和Aersospace Corporation等组织中担任各种技术角色。他的主要研究重点是真空室对霍尔效应推进器性能和稳定性的电气设施影响的表征。其他研究兴趣包括射频离子推进器,高功率电推进设备的热管理和非平衡等离子体。
重要提示:本数据表及其内容(“信息”)属于 AVNET 集团公司(“集团”)成员或已获得授权。除与本数据表相关的产品信息用途外,不授予任何使用许可。不授予任何知识产权许可。信息如有更改,恕不另行通知,并取代之前提供的所有数据表。提供的信息被认为是准确的,但集团对其准确性或完整性、任何错误或遗漏或任何使用不承担任何责任。本数据表的用户应自行检查信息和产品是否适合其用途,不要根据包含或遗漏的信息做出任何假设。因依赖或使用信息而造成的损失或损害(包括因疏忽造成的责任或集团意识到可能发生此类损失或损害的责任)不承担任何责任。这不会限制或约束集团因其疏忽造成的死亡或人身伤害的责任。 Multicomp Pro 是 Premier Farnell Limited 2019 的注册商标。
• 联合军械测试程序 (JOTP) ‐062、PESD 和 HESD 文件提供了产生一致且可重复的结果所需的所有程序、要求和数据,而与进行测试的测试设施、测试站点或服务无关。• JOTP 充当联合服务 ESD 测试程序,直到其内容被纳入军事标准、规范和适用文件的下一版修订版。• 目前正在进行的纳入 JOTP-062 语言的努力包括:
重要提示:本数据表及其内容(“信息”)属于 AVNET 集团公司(“集团”)成员或已获得授权。除与本数据表相关的产品信息用途外,不授予任何使用许可。不授予任何知识产权许可。信息如有更改,恕不另行通知,并取代之前提供的所有数据表。提供的信息被认为是准确的,但集团对其准确性或完整性、任何错误或遗漏或任何使用不承担任何责任。本数据表的用户应自行检查信息和产品是否适合其用途,不要根据包含或遗漏的信息做出任何假设。因依赖或使用信息而造成的损失或损害(包括因疏忽造成的责任或集团意识到可能发生此类损失或损害的责任)不承担任何责任。这不会限制或约束集团因其疏忽造成的死亡或人身伤害的责任。 Multicomp Pro 是 Premier Farnell Limited 2019 的注册商标。
1 DPHY,ONERA,巴黎萨克雷大学,Chemin de la Hunière-BP80100,F-91123 Palaiseau,法国; bruno.christophe@onera.fr (BC); vincent.lebat@onera.fr (VL); emilie.hardy@onera.fr(EH); phuong-anh.huynh@onera.fr (P.-AH); noemie.marquet@onera.fr(新墨西哥州); cedric.blanchard@onera.fr (CB); yannick.bidel@onera.fr (YB); alexandre.bresson@onera.fr (AB)2 慕尼黑工业大学天文学和物理大地测量学老师,Arcisstraße 21,80333 慕尼黑,德国; petro.abrykosov@tum.de (PA); thomas.gruber@tum.de (TG); roland.pail@tum.de (RP)3 欧洲空间局,Keplerlaan 1,PO Box 299,2200 AG Noordwijk,荷兰; ilias.daras@esa.int 4 欧洲空间局 ESA 的 RHEA,Keplerlaan 1, PO Box 299, 2200 AG Noordwijk,荷兰; olivier.carraz@esa.int * 通讯地址:nassim.zahzam@onera.fr
静电放电 (ESD) 引起的损坏是集成电路的主要失效之一。在当今集成电路所采用的 7nm FinFET 工艺中,由于 FinFET 栅极氧化层的厚度减小以及高 k 电介质的可靠性较低,在静电放电 (ESD) 冲击下极其脆弱[1-3],并且遭遇非致命的 ESD 冲击后,ESD 保护性能会逐渐下降[4,5]。一些 ESD 建模和仿真技术已被用于 FinFET 工艺,以帮助分析 ESD 冲击下的 ESD 保护特性[6-9]。ESD 保护二极管被认为是一种很有前途的 ESD 保护器件[6-8]。具有高鲁棒性的二极管串硅控整流器 (DSSCR) 也被认为是以前技术节点的 ESD 保护装置 [ 10 – 15 ],但由于其高漏电和闩锁的较大回弹,它不再适用于 7 nm 技术。FinFET 工艺的 ESD 设计仍然是一个巨大的挑战。目前还没有一种具有足够低触发电压 (Vt) 和高故障电流 (It2) 的高鲁棒性 ESD 保护装置。在本文中,我们提出了一种基于 7 nm FinFET 工艺的新型硅控整流器嵌入式二极管 (SCR-D)。制造并分析了具有不同关键设计的这种保护的特性。
摘要:氧化锌(ZnO)是一种众所周知的半导体材料,由于其出色的电气,机械和独特的光学特性。ZnO纳米颗粒被广泛用于微电源和光电设备的工业规模生产,包括金属氧化物半导体(MOS)气体传感器,光发射二极管,晶体管,晶体管,电容器和太阳能电池。这项研究提出了通过静电纺丝技术优化纳米化ZnO的合成参数。盒子 - Behnken设计(BB)已使用响应表面方法(RSM)应用,以优化选定的静电纺丝和烧结条件。成功研究了施加电压,尖端到收集器距离和退火温度对ZnO颗粒尺寸的影响。扫描电子显微镜(SEM)和透射电子显微镜(TEM)图像确保了乙酸聚乙烯基吡咯烷酮 - 乙酸锌(PVP-ZNAC)的形成,并在退火后纳米结构的ZnO。X射线衍射(XRD)模式表示具有高结晶度的ZnO的六角形结构的纯相。最小尺寸的ZnO纳米颗粒以16 kV的恒定电位合成,收集器和喷嘴之间的距离为12 cm,流量为1 ml/h,钙化温度为600°C,结果表明,纳米化的ZnO表明ZnO具有尺寸和形式的精确浓度,可以通过vary和Sinoring sinoring sinoring和Sinoring sinering snerurnning andersranting sinering anderstrance andersranting sinering andering sinering andoring sinering andornning。
表 3-3 镍蛇形弹簧的设计常数 ...................................................................................... 35 表 3-4 与设备相关的设计常数 ...................................................................................... 40 表 3-5 继电器建模中使用的参数 ...................................................................................... 45 表 3-6 继电器建模中使用的参数 ...................................................................................... 53 表 3-7 加速度计建模中使用的参数 ............................................................................. 63 表 3-8 系统响应摘要 ............................................................................................. 63 表 4-1 主触点材料的电导率和电子平均自由程 ............................................................. 70 表 5-1 在不同电流密度下电镀镍的时间 ............................................................................. 87 表 5-2 镍电镀溶液的典型成分和操作条件 ............................................................................. 90 表 6-1 制造工艺特性摘要 ............................................................................................. 104 表 7-1 制造的微型继电器的特性 ............................................................................................. 120 表 A-1 推荐的软烘烤工艺 [MicroChem Inc.]............................................................. 144 表 A-2 曝光剂量与厚度的关系 [CAMD].............................................................................. 145 表 A-3 推荐的 PEB 工艺 [McroChem Inc.].............................................................. 146 表 A-4 氨基磺酸镍溶液............................................................................................... 147 表 A-5 镍盐的镍含量.................................................................................................... 151 表 A-6 厚度与曝光剂量的关系.................................................................................... 154
在 ESC/BSG 系统中,冷却气体(氦气)的漏流被测量为夹紧性能的标准:大量的 BSG 漏流意味着晶圆未正确夹紧,因此冷却气体未到达晶圆。相反,少量的漏流代表晶圆夹紧良好且冷却效率高。在这种情况下,20 sccm 或以上的氦气流量代表夹紧彻底失败以及工具故障。图 2 显示在“A”和“B”型载体上制备的样品晶圆的冷却气体漏流。在所有施加电压下,弯曲程度较高的晶圆的 BSG 流量最高,漏流值已达到最大值 20 sccm。但是,只要背面冷却气体压力较低,较高电压条件就会消除弯曲对 BSG 流量的影响。换句话说,需要将 BSG 压力降低至约 10 Torr 以下才能夹住弯曲的晶圆,这会导致背面冷却系统的边缘性更严格,并且等离子蚀刻等高温工艺中晶圆过热的可能性更高。