使用生成式设计,人类设计师可以设置流程、输入参数、中途干预以调整约束条件,并最终选择最佳设计(上图中的橙色框)。然后,设计师可以亲自修改设计,或将其重新输入到流程中进行改进。重要的是,这可以大规模完成,同时最大限度地减少资源强度。计算机生成各种解决方案并根据约束条件对其进行测试;成功的变体会被放大,直到产生多个正确的(通常是非常规的)答案,以满足所有约束条件(上图中的蓝色框)。在许多方面,生成式设计是终极的空白创新工具;使设计师能够在很短的时间内耗尽整个解决方案空间,从而让人类有时间战略性地思考下一步该怎么做。例如,当研究人员将生成式人工智能中使用的同一种强化学习应用于人工智能玩棋盘游戏时,它能够发现在象棋和围棋等游戏的千年历史中从未见过的新策略。3
超导镍剂刺激了凝结物理学的新研究观点。这些系统中超导性的分离[1-4]很难与常规的电子偶联机制进行调和[5-9]。因此,镍被普遍认为具有非常规的超导性,并且据信这种情况以两种不同的形式发生。在无限层的情况下,超导状态通常被认为与库酸盐的单间隙D-波状态基本类似(见例如[5,10 - 12])。相比之下,在鲁德斯登 - popper案例中,多间隙S±波状态被认为是一个很可能的状态,因此将这些系统置于另一个类别中,其中基于铁的超导体是参考[13,14]。概念上,对这些状态的明确确定是具有挑战性的,问题仍然开放。在这方面,基于约瑟夫森效应的相位敏感测试可以说是解决这个问题的最优雅和直接的方法。
在本文中,我们开发了一个简单的两期模型,可协调信贷需求和供应摩擦。在这种风格但现实的模型信用和存款市场中,信贷需求和信贷供应摩擦相互放大,以一种平衡产生非常低的信用水平和更强大的真实和名义上利益的方式,因此经济更加接近ZLB。然而,一种非常规的信贷政策,是由政府保证的中央银行贷款组成的,可以部分撤销信贷摩擦的影响,并阻止经济到达ZLB。由于中央银行贷款不受银行家和储户之间的道德危害问题的约束,并保证了政府的保证,因此信贷市场干预措施增加了总信贷供应,并分别影响了总信贷需求。然而,一旦经济处于ZLB,信贷政策的影响就会降低,这是由于相对强大的降低通货膨胀率而减少,这反过来又减少了企业家要求银行贷款的激励措施。
我们预测了一系列不寻常的量子声学现象,这些现象是由完全可调固态平台中的声音-物质相互作用引起的,在该平台中,金刚石中的一系列固态自旋与一维光机械晶体中的量化声波耦合。我们发现,通过使用在光机械相互作用中引入位置相关相的空间变化激光驱动器,可以原位调整机械能带结构,从而导致非常规的量子声音-物质相互作用。我们表明,当自旋与能带共振时,可以发生准手性声音-物质相互作用,可调范围从双向到准单向。当固态自旋频率位于声学带隙内时,我们证明了一种奇异的极化子束缚态的出现,它可以介导长距离可调、奇邻域和复杂的自旋-自旋相互作用。这项工作扩展了目前对量子声子的探索,可以在量子模拟和量子信息处理中得到广泛的应用。
Field-induced transition within the superconducting state of CeRh 2 As 2 Elena Hassinger # , Javier Landaeta, Seunghyun Khim, Manuel Brando, Christoph Geibel, Daniel Hafner, Robert Küchler, Ulrike Stockert, Jacintha Banda, Raul Cardoso-Gil, Andrew P. Mackenzie In this report I want to highlight the discovery of two-phase CERH 2 AS 2中的非常规的超导性。使用热力学探针,我们确定其高场相的超导临界场高达14 t,在过渡温度为0.26 k的材料中很有意义。此外,C轴场在两个不同的超导相之间驱动过渡。尽管CERH 2 AS 2是全球中心对称的事实,但我们表明,CE站点的局部反转对称性破坏使Rashba旋转轨道耦合在基础物理学中起关键作用。更详细的分析表明,从低场状态到偶数和奇数之间的过渡与一个状态之间的过渡有关。
1。Andrei,E。Y.等。 Moiré材料的奇迹。 nat Rev Mater 6,201–206(2021)。 2。 Cao,Y。等。 在魔术角石墨烯超级晶格中半填充时相关的绝缘体行为。 自然556,80–84(2018)。 3。 Tang,Y。等。 在WSE2/WS2Moiré超级晶格中模拟Hubbard模型物理。 自然579,353–358(2020)。 4。 Regan,E。C。等。 Mott和Wigner Crystal态在WSE 2 /WS 2Moiré超级晶格中。 自然579,359–363(2020)。 5。 Wang,L。等。 在扭曲的双层过渡金属二分法中相关的电子相。 nat Mater 19,861–866(2020)。 6。 Cao,Y。等。 魔法石墨烯超级晶格中的非常规的超导性。 自然556,43-50(2018)。 7。 lu,X。等。 超导体,轨道磁铁和魔法双层石墨烯中的相关状态。 自然574,653–657(2019)。 8。 Cai,J。等。 扭曲的Mote2中分数量子异常圆度状态的签名。 自然622,63-68(2023)。 9。 Park,H。等。 观察分数量化的异常霍尔效应。 自然622,74–79(2023)。 10。 Zeng,Y。等。 MoiréMote2中分数Chern绝缘子的热力学证据。 自然622,69–73(2023)。 11。 lu,Z。等。 自然626,759–764(2024)。Andrei,E。Y.等。Moiré材料的奇迹。nat Rev Mater 6,201–206(2021)。2。Cao,Y。等。 在魔术角石墨烯超级晶格中半填充时相关的绝缘体行为。 自然556,80–84(2018)。 3。 Tang,Y。等。 在WSE2/WS2Moiré超级晶格中模拟Hubbard模型物理。 自然579,353–358(2020)。 4。 Regan,E。C。等。 Mott和Wigner Crystal态在WSE 2 /WS 2Moiré超级晶格中。 自然579,359–363(2020)。 5。 Wang,L。等。 在扭曲的双层过渡金属二分法中相关的电子相。 nat Mater 19,861–866(2020)。 6。 Cao,Y。等。 魔法石墨烯超级晶格中的非常规的超导性。 自然556,43-50(2018)。 7。 lu,X。等。 超导体,轨道磁铁和魔法双层石墨烯中的相关状态。 自然574,653–657(2019)。 8。 Cai,J。等。 扭曲的Mote2中分数量子异常圆度状态的签名。 自然622,63-68(2023)。 9。 Park,H。等。 观察分数量化的异常霍尔效应。 自然622,74–79(2023)。 10。 Zeng,Y。等。 MoiréMote2中分数Chern绝缘子的热力学证据。 自然622,69–73(2023)。 11。 lu,Z。等。 自然626,759–764(2024)。Cao,Y。等。在魔术角石墨烯超级晶格中半填充时相关的绝缘体行为。自然556,80–84(2018)。3。Tang,Y。等。 在WSE2/WS2Moiré超级晶格中模拟Hubbard模型物理。 自然579,353–358(2020)。 4。 Regan,E。C。等。 Mott和Wigner Crystal态在WSE 2 /WS 2Moiré超级晶格中。 自然579,359–363(2020)。 5。 Wang,L。等。 在扭曲的双层过渡金属二分法中相关的电子相。 nat Mater 19,861–866(2020)。 6。 Cao,Y。等。 魔法石墨烯超级晶格中的非常规的超导性。 自然556,43-50(2018)。 7。 lu,X。等。 超导体,轨道磁铁和魔法双层石墨烯中的相关状态。 自然574,653–657(2019)。 8。 Cai,J。等。 扭曲的Mote2中分数量子异常圆度状态的签名。 自然622,63-68(2023)。 9。 Park,H。等。 观察分数量化的异常霍尔效应。 自然622,74–79(2023)。 10。 Zeng,Y。等。 MoiréMote2中分数Chern绝缘子的热力学证据。 自然622,69–73(2023)。 11。 lu,Z。等。 自然626,759–764(2024)。Tang,Y。等。在WSE2/WS2Moiré超级晶格中模拟Hubbard模型物理。自然579,353–358(2020)。4。Regan,E。C。等。 Mott和Wigner Crystal态在WSE 2 /WS 2Moiré超级晶格中。 自然579,359–363(2020)。 5。 Wang,L。等。 在扭曲的双层过渡金属二分法中相关的电子相。 nat Mater 19,861–866(2020)。 6。 Cao,Y。等。 魔法石墨烯超级晶格中的非常规的超导性。 自然556,43-50(2018)。 7。 lu,X。等。 超导体,轨道磁铁和魔法双层石墨烯中的相关状态。 自然574,653–657(2019)。 8。 Cai,J。等。 扭曲的Mote2中分数量子异常圆度状态的签名。 自然622,63-68(2023)。 9。 Park,H。等。 观察分数量化的异常霍尔效应。 自然622,74–79(2023)。 10。 Zeng,Y。等。 MoiréMote2中分数Chern绝缘子的热力学证据。 自然622,69–73(2023)。 11。 lu,Z。等。 自然626,759–764(2024)。Regan,E。C。等。Mott和Wigner Crystal态在WSE 2 /WS 2Moiré超级晶格中。自然579,359–363(2020)。5。Wang,L。等。 在扭曲的双层过渡金属二分法中相关的电子相。 nat Mater 19,861–866(2020)。 6。 Cao,Y。等。 魔法石墨烯超级晶格中的非常规的超导性。 自然556,43-50(2018)。 7。 lu,X。等。 超导体,轨道磁铁和魔法双层石墨烯中的相关状态。 自然574,653–657(2019)。 8。 Cai,J。等。 扭曲的Mote2中分数量子异常圆度状态的签名。 自然622,63-68(2023)。 9。 Park,H。等。 观察分数量化的异常霍尔效应。 自然622,74–79(2023)。 10。 Zeng,Y。等。 MoiréMote2中分数Chern绝缘子的热力学证据。 自然622,69–73(2023)。 11。 lu,Z。等。 自然626,759–764(2024)。Wang,L。等。在扭曲的双层过渡金属二分法中相关的电子相。nat Mater 19,861–866(2020)。6。Cao,Y。等。 魔法石墨烯超级晶格中的非常规的超导性。 自然556,43-50(2018)。 7。 lu,X。等。 超导体,轨道磁铁和魔法双层石墨烯中的相关状态。 自然574,653–657(2019)。 8。 Cai,J。等。 扭曲的Mote2中分数量子异常圆度状态的签名。 自然622,63-68(2023)。 9。 Park,H。等。 观察分数量化的异常霍尔效应。 自然622,74–79(2023)。 10。 Zeng,Y。等。 MoiréMote2中分数Chern绝缘子的热力学证据。 自然622,69–73(2023)。 11。 lu,Z。等。 自然626,759–764(2024)。Cao,Y。等。魔法石墨烯超级晶格中的非常规的超导性。自然556,43-50(2018)。7。lu,X。等。超导体,轨道磁铁和魔法双层石墨烯中的相关状态。自然574,653–657(2019)。8。Cai,J。等。 扭曲的Mote2中分数量子异常圆度状态的签名。 自然622,63-68(2023)。 9。 Park,H。等。 观察分数量化的异常霍尔效应。 自然622,74–79(2023)。 10。 Zeng,Y。等。 MoiréMote2中分数Chern绝缘子的热力学证据。 自然622,69–73(2023)。 11。 lu,Z。等。 自然626,759–764(2024)。Cai,J。等。扭曲的Mote2中分数量子异常圆度状态的签名。自然622,63-68(2023)。9。Park,H。等。 观察分数量化的异常霍尔效应。 自然622,74–79(2023)。 10。 Zeng,Y。等。 MoiréMote2中分数Chern绝缘子的热力学证据。 自然622,69–73(2023)。 11。 lu,Z。等。 自然626,759–764(2024)。Park,H。等。观察分数量化的异常霍尔效应。自然622,74–79(2023)。10。Zeng,Y。等。 MoiréMote2中分数Chern绝缘子的热力学证据。 自然622,69–73(2023)。 11。 lu,Z。等。 自然626,759–764(2024)。Zeng,Y。等。MoiréMote2中分数Chern绝缘子的热力学证据。自然622,69–73(2023)。11。lu,Z。等。自然626,759–764(2024)。多层石墨烯中的分数量子异常霍尔效应。12。Xu,F。等。观察整数和分数量子异常大厅效应
作为一种非常规的资源,石油页岩具有丰富的储量和重要潜力。石油页岩资源的理性和有效发展在减少国家能源需求方面非常重要。原位催化技术,其特征在于其高效率,低污染和最少的能源消耗,这是未来油页岩开发的关键方向。本文对原位油页岩采矿技术,油页岩热解催化剂,动构的热解机制以及不同加热过程和催化剂的兼容性进行了全面综述。此外,本文提出了未来的研究研究和油页岩原位催化技术的前景,包括储层修饰,高效催化剂合成,注射过程和高耐高率加热技术。这些视觉是油页岩原位催化技术的有价值的技术参考。©2023作者。Elsevier B.V.的发布服务代表KEAI Communications Co. Ltd.这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/ 4.0/)下的开放访问文章。
clasps(细胞质接头相关蛋白)是微管动力学的无处不在稳定剂,但是它们在微管加末端的分子靶标尚不清楚。使用基于DNA折纸的重建,我们表明,人类clasp2的簇在Sta-Bilized微管尖端上与末端非GTP小管形成负载键。此活性依赖于CLASP2的非常规的TOG2结构域,该结构域在转化为聚合竞争性的GTP小管蛋白时将其高亲和力与非GTP二聚体释放。CLASP2识别核苷酸特异性小管蛋白构象并稳定灾难性的非GTP微管与末端肾小管上GDP和GTP之间的交换相互交换的能力。我们提出,偶发存在的非GTP小管蛋白的TOG2依赖性稳定性代表了一种独特的分子机制,可以抑制自由组装的微管处于自由组装的微管末端的灾难,并促进持久的小管蛋白在负荷骨螺栓固定的末端,例如在射精的细胞中,例如在射电室中。
1。探索多种高级版画技术的集成,以创新以创新和实验性的方式结合浮雕,intaglio和光刻元素的混合印刷品2。尝试合并非常规的材料和过程,以扩大高级版画方法中的创造可能性,促进艺术探索和边界推动创造力3。整合创新的方法和混合媒体元素,以在高级级别的4.创建混合印刷品无缝整合高级浮雕和凹陷技术,以生成多层和视觉动态的构图,以挑战传统的版画规范5。纳入非传统材料,例如拼贴,Chine-Collé或混合媒体元素,以增强高级版画作品的视觉影响,展示了版画技术的创新和实验应用6。实验先进的传统和现代版画方法的融合,以创建创新和表现力的印刷品,以无视艺术惯例并突破中等能力的界限4:学生将处理高级印刷品中概念和技术专长的应用:
暗物质今天可能以超Heavy的复合状态的形式存在。这种暗物质状态之间的碰撞可以释放出强烈的辐射爆发,其中包括最终产品中的γ射线。因此,暗物质的间接检测信号可能包括非常规的γ射线突发。这样的爆发可能并不一定是因为它们的γ射线通量低,而是它们的短暂性和稀有性。我们指出,到目前为止,由于现有和计划中的设施可以在不久的将来检测到后者,其无探测是由于后者而引起的。尤其是,我们建议,通过轻微的实验调整和合适的数据分析,成像大气Cherenkov望远镜(IAIACTS)和脉冲全套近红外的近红外和光学搜索,以寻求外星智能(Panoseti)是可检测如此罕见的,简短而强烈的强烈爆发的有希望的工具。我们还表明,如果我们假设这些爆发源于暗物质状态的碰撞,那么IACTS和PANOSETI可以探测超出现有限制的大型暗物质参数空间。此外,我们提出了一种暗物质的混凝土模型,该模型在这些仪器中产生可能检测到的爆发。