魔术角扭曲的双层石墨烯(MATBG)在理论上和体验上都广泛探讨了一个合适的平台,可用于包括铁磁剂,电荷顺序,破碎的对称性和非常规的超导性的富相图。在本文中,我们研究了MATBG中远程电子相互作用,自旋爆发和超导性之间的复杂相互作用。通过为MATBG采用低能模型,该模型捕获了频带的正确形状,我们探索了短期和长距离相互作用对自旋闪光的影响及其对MATRIX随机相位的超导(SC)成对角度的影响(Matrix RPA)。我们发现,SC状态特别受到远程库仑相互作用的强度影响。有趣的是,我们的矩阵RPA计算表明,与现场相比,系统可以通过增加远距离相互作用的相对强度来从磁相转移到SC相。这些发现强调了电子 - 电子相互作用在塑造MATBG的有趣特性中的相关性,并提供了设计和控制其SC相的途径。
b'magic-角角扭曲的双层石墨烯可容纳各种有趣的物质状态,包括非常规的超导状态。但是,这种材料可以形成全新的物质状态吗?在本次演讲中,我将讨论两种不同类型的电子冷凝物的可能出现,它们超出了BCS耦合范式。这些是由典型的四元素形成的冷凝物,在电子对之间没有相干性,而是对成对对之间的相干性。通过使用大型蒙特卡洛模拟在魔术角扭曲的低能有效模型[1]中,我们表明,取决于超导地面状态,费米式四倍体置置供应量可以作为遗传相吻合。由四个破坏时间逆转对称性的电子形成,通常出现在超导过渡上方[2]。相反,如果基态是列明超导体,则我们的数值模拟表明,该系统在正常金属相中熔化之前表现出电荷4E相[3]。这表明扭曲的双层石墨烯是稳定和观察这些新型量子状态的理想平台。
引言阿育吠陀是最古老的传统印度医学系统,植根于强大的哲学和实验基础。这是一门纪律,重点是对健康和个性化医疗保健的全面看法。它被认为是一种综合物理,心理,哲学,道德和精神健康的综合医学系统。阿育吠陀将每个细胞视为纯粹智力的重要体现,这就是为什么它被称为自我修复科学的原因。此外,除了自我修复哲学之外,草药治疗在印度传统医学系统中也起着至关重要的作用。如世界卫生组织所述,大约70-80%的全球人口使用了非常规的草药来治疗。公众对互补和替代医学的兴趣主要是由与合成药物相关的副作用的增加,几种慢性病,新药物的高费用,微生物耐药性以及新疾病的出现。阿育吠陀医学非常有效,尚不完全了解许多主要阿育吠陀药物的作用方式,药理学,药代动力学和药物助剂。此外,由于不足
Josephson与拓扑绝缘子作为其弱连接(S-TI-S结)的连接被预计将托管Majorana Fermions,这是为拓扑保护受拓扑保护的量子计算创建量子的关键。但是S-Ti-S电流相关的细节及其与磁场的相互作用尚不清楚。我们用NBTI导线制造了一个BI 2 SE 3连接,并使用施加的平面内字段来测量连接处的Fraunhofer图案。我们观察到,不对称的fraunhofer图案出现在B z,b x,y的电阻图中,并带有基因区的节点间距。这些不对称模式即使在零平行场中也出现,对于高达1 K的温度,它们也会与异常特征与预期有限的库珀配对动量移动和几何效应的不对称Fraunhofer模式进行比较。我们表明几何效应可以主导,而与平面场地幅度无关。这些结果对于将几何相移与库珀对动量转移,Majorana模式特征或其他非常规的超导行为而导致的几何相移很重要。
受自然启发而设计高性能蛋白质材料的努力主要集中在改变自然发生的序列以赋予所需的功能,而从头设计则明显落后,需要非常规的创新方法。在这里,使用部分无序的弹性蛋白样多肽 (ELP) 作为初始构建块,这项工作表明,可以通过混合仿生设计加速蛋白质材料的从头工程,这项工作通过整合计算建模、深度神经网络和重组 DNA 技术实现了这一点。这种可推广的方法涉及整合一系列具有 𝜶 螺旋构象的从头设计序列,并将它们遗传编码为受生物启发的内在无序重复基序。新的 ELP 变体保持结构构象,并在体外表现出可调节的非热平衡超分子自组装和相行为。这项工作说明了预测的分子设计在结构和功能材料中的有效转化。所提出的方法可应用于广泛的部分无序生物大分子,并可能为发现新的结构蛋白铺平道路。
摘要:二维材料堆叠层的扭转层的应用导致Moiré模式的形成,并可能以决定性的方式改变系统电子性质。最初已证明这是扭曲的双层石墨烯,其相图包括非常规的超导性以及莫特绝缘状态。中间扭曲角度可作为一个参数驱动的中等相关的电子,使电子相关的态度是一个强烈相关的制度,这表明了用于高度控制材料的临时设计的新范式。铜 - 氧化薄膜和单层制造的最新进展为探索另一类扭曲的多层系统提供了一个机会,这些系统来自高温超导体。在这次演讲中,我概述了我们对扭曲的双层铜矿中超导状态的理论研究,在铜位点上,在微观T-J-U模型的框架中融合了铜位点上的强电子相关性。所获得的相图既包含无间隙的D波超导相位,又包含拓扑状态,它们会自发打破时间反转对称性。我们的结果将与最近的实验有关。
有限摩托车配对是一种非常规的超导性形式,被普遍认为需要有限的磁化。altermagnetism是一种新兴的磁相,具有高度各向异性的特定对称性旋转旋转,但净磁力为零。在这里,我们研究了与常规S波超导体相关的金属altermagnets中的库珀配对。值得注意的是,尽管系统中的净磁化为零,但在Altermagnets中引起的库珀对获得了有限的质量势。这种异常的库珀对动量在很大程度上取决于传播方向,并表现出异常的对称模式。此外,它产生了几个独特的特征:(i)高度取决于顺序参数中的振荡,(ii)在约瑟夫森超流量中可控的0-π跃迁,(iii)大型cooper-angle-angle cooper-pair-pair-pair-pair pair toptories在连接中的旋转范围与串联的串联(vanist and)的旋转(ii iv)的旋转相似的方向相平行(iv)方向。最后,我们讨论了我们在候选材料(例如RUO 2和KRU 4 O 8)中的预测实施。
最近,在理论上提出并实现了电子状态的自旋分裂(SS)的非常规的抗铁磁铁,其中包含指向不同方向的矩矩的磁性sublattics通过一组新型的符号来连接。这样的SS是实质性的,依赖性的,并且与自旋 - 轨道耦合(SOC)强度无关,使这些磁铁有望用于抗磁性旋转旋转。在此结合了角度分辨光发射光谱(ARPE)和密度功能理论(DFT)计算,这是一项对CRSB的系统研究,是一种金属旋转式抗速率抗fiferromagnet候选,具有Néel温度T n = 703 K。数据揭示了沿平面外和平面动量方向的CRSB的电子结构,从而使各向异性K依赖性SS与计算结果非常吻合。在非对称动量点下,此类SS的大小至少达到至少0.8 eV,这显着高于最大的已知SOC诱导的SS。这种化合物扩大了抗磁性旋转型材料的材料的选择,并且很可能会刺激随后对在室温下起作用的高效率旋转器件的研究。
在二维ISING型nematic量子临界点附近,列级参数的量子波动与电子耦合,从而导致非Fermi液体行为和非常规的超导性。这两个效应之间的相互作用已通过Eliashberg方程进行了广泛的研究,以实现超导间隙。但是,以前的研究通常依赖于可能在结果中引入不确定性的各种近似值。在这里,我们在没有这些近似值的情况下重新访问了此问题,并检查其去除方式如何改变结果。我们在数值上求解了质量重新归一化A 1(p)的四个自洽的EliAshberg积分方程,化学势重新归一化A 2(p),配对函数φ(p)和列米的自我(偏振)函数π(q)使用迭代方法π(q)。我们的计算保留了这些方程式的明确非线性和动量依赖性。我们发现,丢弃一些常用的近似值可以更准确地确定超导间隙Δ=φ /a 1和临界温度t c。EliAshberg方程具有两个不同的收敛间隙解:扩展的S波间隙和D x 2 -2 -y 2波间隙。后者是脆弱的,而前者对小扰动的强大。
微电网作为一种结构,随着能源损失率的降低,可再生能源的有效利用,使用储能系统自动运行的可能性以及其提供的盈利能力,它每天都变得更加重要。此外,这种有助于减少碳足迹的结构将在不久的将来使用纳米格里德和智能电网而变得至关重要。创新的动态能源管理系统将使微电网提供的这些优势更容易访问,同时促进电动汽车的整合和有效贡献。另一方面,由于机器学习和深度学习中的有前途且有用的发展和算法,基于人工智能(AI)的控制方法和应用程序不断增加。因此,强化学习的概念(RL)对系统的控制提供了非常规的观点。这项研究是创建基于AI的能源管理系统的最后一步,根据所有这些要求和发展,介绍了图形界面设计。在这项研究中,用于确定管理措施的深度RL代理以及为做出必要预测的预测模型所收集的预测模型都聚集在一个屋顶下。索引术语 - 强化学习,GUI设计,微电网,深度学习,能量管理,人工智能