事实证明,二维层状材料的氧化有利于形成氧化物/二维材料异质结构,这为低功耗电子设备的新范式打开了大门。硫化镓(II)(𝜷-GaS)是一种六方相 III 族单硫属化物,是一种宽带隙半导体,单层和少层形式的带隙超过 3 eV。其氧化物氧化镓(Ga 2 O 3)兼具大带隙(4.4-5.3 eV)和高介电常数(≈ 10)。尽管这两种材料都具有技术潜力,但原子级厚度的𝜷-GaS 的受控氧化仍未得到充分探索。本研究重点关注使用氧等离子体处理对𝜷-GaS 进行受控氧化,以解决现有研究中的重大空白。结果表明,在暴露于 10 W 的 O 2 时,能够形成厚度为 4 nm 的超薄天然氧化物 (GaS x O y ),从而形成 GaS x O y /GaS 异质结构,其下方的 GaS 层保持完整。通过将此类结构集成在金属电极之间并施加电压斜坡或脉冲等电应力,研究了它们在电阻式随机存取存储器 (ReRAM) 中的应用。所产生的氧化物的超薄特性可实现低操作功率,能耗低至每次操作 0.22 nJ,同时分别保持 350 次循环和 10 4 s 的耐久性和保持力。这些结果表明基于氧化的 GaS x O y /GaS 异质结构在电子应用,特别是低功耗存储设备中具有巨大的潜力。
c) 人工智能参与者应根据其角色、环境和能力,持续对人工智能系统生命周期的每个阶段应用系统的风险管理方法,并在适当情况下采取负责任的商业实践来应对与人工智能系统相关的风险,包括通过不同人工智能参与者、人工智能知识和人工智能资源提供者、人工智能系统用户和其他利益相关者之间的合作。风险包括与人权相关的风险,例如安全、保障和隐私、劳工权利和知识产权,以及有害偏见。
非晶态固体材料因其离子电导率、稳定性和可加工性等优良特性,在储能领域引起了越来越多的关注。然而,与块体晶体材料相比,密度泛函理论 (DFT) 计算的规模限制和实验方法的分辨率限制阻碍了对这些高度复杂亚稳态系统的基本理解。为了填补知识空白并指导非晶态电池材料和界面的合理设计,我们提出了一个基于机器学习的原子间势的分子动力学 (MD) 框架,该框架经过动态训练,以研究非晶态固体电解质 Li 3 PS 4 及其保护涂层非晶态 Li 3 B 11 O 18 。使用机器学习势使我们能够在 DFT 无法访问的时间和长度尺度上模拟材料,同时保持接近 DFT 水平的精度。这种方法使我们能够计算非晶化能、非晶-非晶界面能以及界面对锂离子电导率的影响。这项研究证明了主动学习的原子间势在将从头算建模的应用扩展到更复杂和现实的系统(例如非晶材料和界面)方面的良好作用。
6 Shinpo,Fumio,“为什么要有‘机器人法’?”机器人法律协会成立筹备研究会报告(2015年10月11日)(2015年)。有关这些原则的详情,请参阅新浦文雄的《机器人法:法律领域问题的鸟瞰图》,《信息法研究》,第 9 卷,第 65-78 页(2017 年)和新浦文雄的《日本主要人工智能以及机器人战略和建立基本原则的研究,人工智能法律研究手册,Woodrow Barfield、Ugo Pagallo(编),Edward Elgar Publishing(2018)第 114-142 页,Jacob Turner,R OBOT规则:规范人工智能,Palgrave Macmillan;第一版。(2019 年)。7 规范欧洲新兴机器人技术:机器人技术面临的法律和伦理,FP7-SCIENCE-IN-SOCIETY-2011-1,项目编号:289092.8《深度剖析/成立律师协会有困难吗?“机器人的‘社会化推进’面临诸多挑战,业内人士表达异议”,日刊工业新闻,2016 年 1 月 18 日 https://www.nikkan.co.jp/articles/view/00371272 。
异常及其患病率每年增加。其发育与肠道微生物群的不平衡密切相关,诸如肠道肝轴的破坏,对睾丸屏障的损害以及内毒素血症在其发病机理中起关键作用。近年来,肠道菌群的调节已成为NAFLD治疗的热门话题。Rifaximin是一种口服施用的不可吸收抗生素,在改善肠道菌群,减少氧毒素和减少炎症因子方面已显示出潜力。虽然短期使用已显示出积极的影响,但长期使用的安全及其对有益细菌的影响仍需要进一步研究。future研究应着重于优化利福昔明治疗策略,以为NAFLD提供更有效的治疗选择。
图 1:非晶态 SiO 2 块体模型结构的对分布函数 (PDF)。图中用颜色对不同的对进行编码,Si-O 对用蓝线表示,Si-Si 用绿线表示,OO 用红线表示。y 轴表示归一化的对数,x 轴表示相应的距离(单位为 Å)。对于块体非晶态 SiO 2 模型结构和后续图中,Si 原子用黄色球体表示,O 原子用红色表示。
图1. 结构示意图及在正入射光下模拟得到的吸收光谱。(a)红外探测器的探测机理。目标的红外辐射透过大气后被红外探测器捕获。(b)双层超薄膜示意图及GST在不同状态之间的转变机制。当温度超过结晶温度𝑇𝑇 𝑐𝑐时,GST会逐渐由非晶态转变为结晶态,而一旦温度超过熔点𝑇𝑇 𝑚𝑚后,经过快速退火,GST又可以变回非晶态。(c)光谱椭偏仪测得的红外波段不同状态下GST的相对介电常数。(d)双相态超薄膜对正入射光的吸收光谱及大气透过光谱。
截止日期前 4 天 - 成功的竞标者将是团队设定的估计价格范围内提供最低出价的竞标者。但是,如果投标价格在预算、结算和会计命令(1949 年帝国法令第 165 号)第 85 条范围内...